| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fldgenval.1 |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
| 2 |
|
fldgenval.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 3 |
|
fldgenidfld.s |
⊢ ( 𝜑 → 𝑆 ∈ ( SubDRing ‘ 𝐹 ) ) |
| 4 |
|
fldgenssp.t |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑆 ) |
| 5 |
|
issdrg |
⊢ ( 𝑆 ∈ ( SubDRing ‘ 𝐹 ) ↔ ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹 ↾s 𝑆 ) ∈ DivRing ) ) |
| 6 |
3 5
|
sylib |
⊢ ( 𝜑 → ( 𝐹 ∈ DivRing ∧ 𝑆 ∈ ( SubRing ‘ 𝐹 ) ∧ ( 𝐹 ↾s 𝑆 ) ∈ DivRing ) ) |
| 7 |
6
|
simp2d |
⊢ ( 𝜑 → 𝑆 ∈ ( SubRing ‘ 𝐹 ) ) |
| 8 |
1
|
subrgss |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝐹 ) → 𝑆 ⊆ 𝐵 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 10 |
4 9
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ 𝐵 ) |
| 11 |
1 2 10
|
fldgenval |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑇 ) = ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ) |
| 12 |
|
sseq2 |
⊢ ( 𝑎 = 𝑆 → ( 𝑇 ⊆ 𝑎 ↔ 𝑇 ⊆ 𝑆 ) ) |
| 13 |
12 3 4
|
elrabd |
⊢ ( 𝜑 → 𝑆 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ) |
| 14 |
|
intss1 |
⊢ ( 𝑆 ∈ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ⊆ 𝑆 ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ∩ { 𝑎 ∈ ( SubDRing ‘ 𝐹 ) ∣ 𝑇 ⊆ 𝑎 } ⊆ 𝑆 ) |
| 16 |
11 15
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐹 fldGen 𝑇 ) ⊆ 𝑆 ) |