| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quslvec.n |
⊢ 𝑄 = ( 𝑊 /s ( 𝑊 ~QG 𝑆 ) ) |
| 2 |
|
quslvec.1 |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 3 |
|
quslvec.2 |
⊢ ( 𝜑 → 𝑆 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 5 |
2
|
lveclmodd |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
1 4 5 3
|
quslmod |
⊢ ( 𝜑 → 𝑄 ∈ LMod ) |
| 7 |
1
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑊 /s ( 𝑊 ~QG 𝑆 ) ) ) |
| 8 |
4
|
a1i |
⊢ ( 𝜑 → ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) ) |
| 9 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑊 ~QG 𝑆 ) ∈ V ) |
| 10 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 11 |
7 8 9 2 10
|
quss |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑄 ) ) |
| 12 |
10
|
lvecdrng |
⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 13 |
2 12
|
syl |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 14 |
11 13
|
eqeltrrd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑄 ) ∈ DivRing ) |
| 15 |
|
eqid |
⊢ ( Scalar ‘ 𝑄 ) = ( Scalar ‘ 𝑄 ) |
| 16 |
15
|
islvec |
⊢ ( 𝑄 ∈ LVec ↔ ( 𝑄 ∈ LMod ∧ ( Scalar ‘ 𝑄 ) ∈ DivRing ) ) |
| 17 |
6 14 16
|
sylanbrc |
⊢ ( 𝜑 → 𝑄 ∈ LVec ) |