Metamath Proof Explorer


Theorem quslvec

Description: If S is a vector subspace in W , then Q = W / S is a vector space, called the quotient space of W by S . (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses quslvec.n
|- Q = ( W /s ( W ~QG S ) )
quslvec.1
|- ( ph -> W e. LVec )
quslvec.2
|- ( ph -> S e. ( LSubSp ` W ) )
Assertion quslvec
|- ( ph -> Q e. LVec )

Proof

Step Hyp Ref Expression
1 quslvec.n
 |-  Q = ( W /s ( W ~QG S ) )
2 quslvec.1
 |-  ( ph -> W e. LVec )
3 quslvec.2
 |-  ( ph -> S e. ( LSubSp ` W ) )
4 eqid
 |-  ( Base ` W ) = ( Base ` W )
5 2 lveclmodd
 |-  ( ph -> W e. LMod )
6 1 4 5 3 quslmod
 |-  ( ph -> Q e. LMod )
7 1 a1i
 |-  ( ph -> Q = ( W /s ( W ~QG S ) ) )
8 4 a1i
 |-  ( ph -> ( Base ` W ) = ( Base ` W ) )
9 ovexd
 |-  ( ph -> ( W ~QG S ) e. _V )
10 eqid
 |-  ( Scalar ` W ) = ( Scalar ` W )
11 7 8 9 2 10 quss
 |-  ( ph -> ( Scalar ` W ) = ( Scalar ` Q ) )
12 10 lvecdrng
 |-  ( W e. LVec -> ( Scalar ` W ) e. DivRing )
13 2 12 syl
 |-  ( ph -> ( Scalar ` W ) e. DivRing )
14 11 13 eqeltrrd
 |-  ( ph -> ( Scalar ` Q ) e. DivRing )
15 eqid
 |-  ( Scalar ` Q ) = ( Scalar ` Q )
16 15 islvec
 |-  ( Q e. LVec <-> ( Q e. LMod /\ ( Scalar ` Q ) e. DivRing ) )
17 6 14 16 sylanbrc
 |-  ( ph -> Q e. LVec )