| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quslvec.n |
|- Q = ( W /s ( W ~QG S ) ) |
| 2 |
|
quslvec.1 |
|- ( ph -> W e. LVec ) |
| 3 |
|
quslvec.2 |
|- ( ph -> S e. ( LSubSp ` W ) ) |
| 4 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 5 |
2
|
lveclmodd |
|- ( ph -> W e. LMod ) |
| 6 |
1 4 5 3
|
quslmod |
|- ( ph -> Q e. LMod ) |
| 7 |
1
|
a1i |
|- ( ph -> Q = ( W /s ( W ~QG S ) ) ) |
| 8 |
4
|
a1i |
|- ( ph -> ( Base ` W ) = ( Base ` W ) ) |
| 9 |
|
ovexd |
|- ( ph -> ( W ~QG S ) e. _V ) |
| 10 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 11 |
7 8 9 2 10
|
quss |
|- ( ph -> ( Scalar ` W ) = ( Scalar ` Q ) ) |
| 12 |
10
|
lvecdrng |
|- ( W e. LVec -> ( Scalar ` W ) e. DivRing ) |
| 13 |
2 12
|
syl |
|- ( ph -> ( Scalar ` W ) e. DivRing ) |
| 14 |
11 13
|
eqeltrrd |
|- ( ph -> ( Scalar ` Q ) e. DivRing ) |
| 15 |
|
eqid |
|- ( Scalar ` Q ) = ( Scalar ` Q ) |
| 16 |
15
|
islvec |
|- ( Q e. LVec <-> ( Q e. LMod /\ ( Scalar ` Q ) e. DivRing ) ) |
| 17 |
6 14 16
|
sylanbrc |
|- ( ph -> Q e. LVec ) |