Step |
Hyp |
Ref |
Expression |
1 |
|
quslmod.n |
|- N = ( M /s ( M ~QG G ) ) |
2 |
|
quslmod.v |
|- V = ( Base ` M ) |
3 |
|
quslmod.1 |
|- ( ph -> M e. LMod ) |
4 |
|
quslmod.2 |
|- ( ph -> G e. ( LSubSp ` M ) ) |
5 |
1
|
a1i |
|- ( ph -> N = ( M /s ( M ~QG G ) ) ) |
6 |
2
|
a1i |
|- ( ph -> V = ( Base ` M ) ) |
7 |
|
eqid |
|- ( x e. V |-> [ x ] ( M ~QG G ) ) = ( x e. V |-> [ x ] ( M ~QG G ) ) |
8 |
|
ovexd |
|- ( ph -> ( M ~QG G ) e. _V ) |
9 |
5 6 7 8 3
|
qusval |
|- ( ph -> N = ( ( x e. V |-> [ x ] ( M ~QG G ) ) "s M ) ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
11 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
12 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
13 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
14 |
5 6 7 8 3
|
quslem |
|- ( ph -> ( x e. V |-> [ x ] ( M ~QG G ) ) : V -onto-> ( V /. ( M ~QG G ) ) ) |
15 |
|
eqid |
|- ( LSubSp ` M ) = ( LSubSp ` M ) |
16 |
15
|
lsssubg |
|- ( ( M e. LMod /\ G e. ( LSubSp ` M ) ) -> G e. ( SubGrp ` M ) ) |
17 |
3 4 16
|
syl2anc |
|- ( ph -> G e. ( SubGrp ` M ) ) |
18 |
|
eqid |
|- ( M ~QG G ) = ( M ~QG G ) |
19 |
2 18
|
eqger |
|- ( G e. ( SubGrp ` M ) -> ( M ~QG G ) Er V ) |
20 |
17 19
|
syl |
|- ( ph -> ( M ~QG G ) Er V ) |
21 |
2
|
fvexi |
|- V e. _V |
22 |
21
|
a1i |
|- ( ph -> V e. _V ) |
23 |
|
lmodgrp |
|- ( M e. LMod -> M e. Grp ) |
24 |
3 23
|
syl |
|- ( ph -> M e. Grp ) |
25 |
24
|
adantr |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> M e. Grp ) |
26 |
|
simprl |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> p e. V ) |
27 |
|
simprr |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> q e. V ) |
28 |
2 11
|
grpcl |
|- ( ( M e. Grp /\ p e. V /\ q e. V ) -> ( p ( +g ` M ) q ) e. V ) |
29 |
25 26 27 28
|
syl3anc |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p ( +g ` M ) q ) e. V ) |
30 |
|
lmodabl |
|- ( M e. LMod -> M e. Abel ) |
31 |
|
ablnsg |
|- ( M e. Abel -> ( NrmSGrp ` M ) = ( SubGrp ` M ) ) |
32 |
3 30 31
|
3syl |
|- ( ph -> ( NrmSGrp ` M ) = ( SubGrp ` M ) ) |
33 |
17 32
|
eleqtrrd |
|- ( ph -> G e. ( NrmSGrp ` M ) ) |
34 |
2 18 11
|
eqgcpbl |
|- ( G e. ( NrmSGrp ` M ) -> ( ( a ( M ~QG G ) p /\ b ( M ~QG G ) q ) -> ( a ( +g ` M ) b ) ( M ~QG G ) ( p ( +g ` M ) q ) ) ) |
35 |
33 34
|
syl |
|- ( ph -> ( ( a ( M ~QG G ) p /\ b ( M ~QG G ) q ) -> ( a ( +g ` M ) b ) ( M ~QG G ) ( p ( +g ` M ) q ) ) ) |
36 |
20 22 7 29 35
|
ercpbl |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` a ) = ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` p ) /\ ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` b ) = ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` q ) ) -> ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` ( a ( +g ` M ) b ) ) = ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` ( p ( +g ` M ) q ) ) ) ) |
37 |
3
|
adantr |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ a e. V /\ b e. V ) ) -> M e. LMod ) |
38 |
4
|
adantr |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ a e. V /\ b e. V ) ) -> G e. ( LSubSp ` M ) ) |
39 |
|
simpr1 |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ a e. V /\ b e. V ) ) -> k e. ( Base ` ( Scalar ` M ) ) ) |
40 |
|
eqid |
|- ( .s ` N ) = ( .s ` N ) |
41 |
|
simpr2 |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ a e. V /\ b e. V ) ) -> a e. V ) |
42 |
|
simpr3 |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ a e. V /\ b e. V ) ) -> b e. V ) |
43 |
2 18 10 12 37 38 39 1 40 7 41 42
|
qusvscpbl |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ a e. V /\ b e. V ) ) -> ( ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` a ) = ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` b ) -> ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` ( k ( .s ` M ) a ) ) = ( ( x e. V |-> [ x ] ( M ~QG G ) ) ` ( k ( .s ` M ) b ) ) ) ) |
44 |
9 2 10 11 12 13 14 36 43 3
|
imaslmod |
|- ( ph -> N e. LMod ) |