Step |
Hyp |
Ref |
Expression |
1 |
|
quslmod.n |
|- N = ( M /s ( M ~QG G ) ) |
2 |
|
quslmod.v |
|- V = ( Base ` M ) |
3 |
|
quslmod.1 |
|- ( ph -> M e. LMod ) |
4 |
|
quslmod.2 |
|- ( ph -> G e. ( LSubSp ` M ) ) |
5 |
|
quslmhm.f |
|- F = ( x e. V |-> [ x ] ( M ~QG G ) ) |
6 |
|
eqid |
|- ( .s ` M ) = ( .s ` M ) |
7 |
|
eqid |
|- ( .s ` N ) = ( .s ` N ) |
8 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
9 |
|
eqid |
|- ( Scalar ` N ) = ( Scalar ` N ) |
10 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
11 |
1 2 3 4
|
quslmod |
|- ( ph -> N e. LMod ) |
12 |
1
|
a1i |
|- ( ph -> N = ( M /s ( M ~QG G ) ) ) |
13 |
2
|
a1i |
|- ( ph -> V = ( Base ` M ) ) |
14 |
|
ovexd |
|- ( ph -> ( M ~QG G ) e. _V ) |
15 |
12 13 14 3 8
|
quss |
|- ( ph -> ( Scalar ` M ) = ( Scalar ` N ) ) |
16 |
15
|
eqcomd |
|- ( ph -> ( Scalar ` N ) = ( Scalar ` M ) ) |
17 |
|
eqid |
|- ( LSubSp ` M ) = ( LSubSp ` M ) |
18 |
17
|
lsssubg |
|- ( ( M e. LMod /\ G e. ( LSubSp ` M ) ) -> G e. ( SubGrp ` M ) ) |
19 |
3 4 18
|
syl2anc |
|- ( ph -> G e. ( SubGrp ` M ) ) |
20 |
|
lmodabl |
|- ( M e. LMod -> M e. Abel ) |
21 |
|
ablnsg |
|- ( M e. Abel -> ( NrmSGrp ` M ) = ( SubGrp ` M ) ) |
22 |
3 20 21
|
3syl |
|- ( ph -> ( NrmSGrp ` M ) = ( SubGrp ` M ) ) |
23 |
19 22
|
eleqtrrd |
|- ( ph -> G e. ( NrmSGrp ` M ) ) |
24 |
2 1 5
|
qusghm |
|- ( G e. ( NrmSGrp ` M ) -> F e. ( M GrpHom N ) ) |
25 |
23 24
|
syl |
|- ( ph -> F e. ( M GrpHom N ) ) |
26 |
12 13 5 14 3
|
qusval |
|- ( ph -> N = ( F "s M ) ) |
27 |
12 13 5 14 3
|
quslem |
|- ( ph -> F : V -onto-> ( V /. ( M ~QG G ) ) ) |
28 |
|
eqid |
|- ( M ~QG G ) = ( M ~QG G ) |
29 |
3
|
adantr |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ u e. V /\ v e. V ) ) -> M e. LMod ) |
30 |
4
|
adantr |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ u e. V /\ v e. V ) ) -> G e. ( LSubSp ` M ) ) |
31 |
|
simpr1 |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ u e. V /\ v e. V ) ) -> k e. ( Base ` ( Scalar ` M ) ) ) |
32 |
|
simpr2 |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ u e. V /\ v e. V ) ) -> u e. V ) |
33 |
|
simpr3 |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ u e. V /\ v e. V ) ) -> v e. V ) |
34 |
2 28 10 6 29 30 31 1 7 5 32 33
|
qusvscpbl |
|- ( ( ph /\ ( k e. ( Base ` ( Scalar ` M ) ) /\ u e. V /\ v e. V ) ) -> ( ( F ` u ) = ( F ` v ) -> ( F ` ( k ( .s ` M ) u ) ) = ( F ` ( k ( .s ` M ) v ) ) ) ) |
35 |
26 13 27 3 8 10 6 7 34
|
imasvscaval |
|- ( ( ph /\ y e. ( Base ` ( Scalar ` M ) ) /\ z e. V ) -> ( y ( .s ` N ) ( F ` z ) ) = ( F ` ( y ( .s ` M ) z ) ) ) |
36 |
35
|
3expb |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` M ) ) /\ z e. V ) ) -> ( y ( .s ` N ) ( F ` z ) ) = ( F ` ( y ( .s ` M ) z ) ) ) |
37 |
36
|
eqcomd |
|- ( ( ph /\ ( y e. ( Base ` ( Scalar ` M ) ) /\ z e. V ) ) -> ( F ` ( y ( .s ` M ) z ) ) = ( y ( .s ` N ) ( F ` z ) ) ) |
38 |
2 6 7 8 9 10 3 11 16 25 37
|
islmhmd |
|- ( ph -> F e. ( M LMHom N ) ) |