Step |
Hyp |
Ref |
Expression |
1 |
|
quslmod.n |
⊢ 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) |
2 |
|
quslmod.v |
⊢ 𝑉 = ( Base ‘ 𝑀 ) |
3 |
|
quslmod.1 |
⊢ ( 𝜑 → 𝑀 ∈ LMod ) |
4 |
|
quslmod.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( LSubSp ‘ 𝑀 ) ) |
5 |
|
quslmhm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) |
6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) |
7 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑁 ) = ( ·𝑠 ‘ 𝑁 ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
9 |
|
eqid |
⊢ ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑁 ) |
10 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
11 |
1 2 3 4
|
quslmod |
⊢ ( 𝜑 → 𝑁 ∈ LMod ) |
12 |
1
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) ) |
13 |
2
|
a1i |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑀 ) ) |
14 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑀 ~QG 𝐺 ) ∈ V ) |
15 |
12 13 14 3 8
|
quss |
⊢ ( 𝜑 → ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑁 ) ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑀 ) ) |
17 |
|
eqid |
⊢ ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 ) |
18 |
17
|
lsssubg |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐺 ∈ ( LSubSp ‘ 𝑀 ) ) → 𝐺 ∈ ( SubGrp ‘ 𝑀 ) ) |
19 |
3 4 18
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( SubGrp ‘ 𝑀 ) ) |
20 |
|
lmodabl |
⊢ ( 𝑀 ∈ LMod → 𝑀 ∈ Abel ) |
21 |
|
ablnsg |
⊢ ( 𝑀 ∈ Abel → ( NrmSGrp ‘ 𝑀 ) = ( SubGrp ‘ 𝑀 ) ) |
22 |
3 20 21
|
3syl |
⊢ ( 𝜑 → ( NrmSGrp ‘ 𝑀 ) = ( SubGrp ‘ 𝑀 ) ) |
23 |
19 22
|
eleqtrrd |
⊢ ( 𝜑 → 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) ) |
24 |
2 1 5
|
qusghm |
⊢ ( 𝐺 ∈ ( NrmSGrp ‘ 𝑀 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
25 |
23 24
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
26 |
12 13 5 14 3
|
qusval |
⊢ ( 𝜑 → 𝑁 = ( 𝐹 “s 𝑀 ) ) |
27 |
12 13 5 14 3
|
quslem |
⊢ ( 𝜑 → 𝐹 : 𝑉 –onto→ ( 𝑉 / ( 𝑀 ~QG 𝐺 ) ) ) |
28 |
|
eqid |
⊢ ( 𝑀 ~QG 𝐺 ) = ( 𝑀 ~QG 𝐺 ) |
29 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑀 ∈ LMod ) |
30 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝑀 ) ) |
31 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
32 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑢 ∈ 𝑉 ) |
33 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → 𝑣 ∈ 𝑉 ) |
34 |
2 28 10 6 29 30 31 1 7 5 32 33
|
qusvscpbl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉 ) ) → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑣 ) → ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑀 ) 𝑢 ) ) = ( 𝐹 ‘ ( 𝑘 ( ·𝑠 ‘ 𝑀 ) 𝑣 ) ) ) ) |
35 |
26 13 27 3 8 10 6 7 34
|
imasvscaval |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑉 ) → ( 𝑦 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
36 |
35
|
3expb |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝑦 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑧 ) ) = ( 𝐹 ‘ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) ) |
37 |
36
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑧 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑦 ( ·𝑠 ‘ 𝑀 ) 𝑧 ) ) = ( 𝑦 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑧 ) ) ) |
38 |
2 6 7 8 9 10 3 11 16 25 37
|
islmhmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) |