Step |
Hyp |
Ref |
Expression |
1 |
|
eqgvscpbl.v |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
eqgvscpbl.e |
⊢ ∼ = ( 𝑀 ~QG 𝐺 ) |
3 |
|
eqgvscpbl.s |
⊢ 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
4 |
|
eqgvscpbl.p |
⊢ · = ( ·𝑠 ‘ 𝑀 ) |
5 |
|
eqgvscpbl.m |
⊢ ( 𝜑 → 𝑀 ∈ LMod ) |
6 |
|
eqgvscpbl.g |
⊢ ( 𝜑 → 𝐺 ∈ ( LSubSp ‘ 𝑀 ) ) |
7 |
|
eqgvscpbl.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝑆 ) |
8 |
|
qusscaval.n |
⊢ 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) |
9 |
|
qusscaval.m |
⊢ ∙ = ( ·𝑠 ‘ 𝑁 ) |
10 |
|
qusvscpbl.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) |
11 |
|
qusvscpbl.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐵 ) |
12 |
|
qusvscpbl.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( 𝑀 ~QG 𝐺 ) = ( 𝑀 ~QG 𝐺 ) |
14 |
1 13 3 4 5 6 7
|
eqgvscpbl |
⊢ ( 𝜑 → ( 𝑈 ( 𝑀 ~QG 𝐺 ) 𝑉 → ( 𝐾 · 𝑈 ) ( 𝑀 ~QG 𝐺 ) ( 𝐾 · 𝑉 ) ) ) |
15 |
|
eqid |
⊢ ( LSubSp ‘ 𝑀 ) = ( LSubSp ‘ 𝑀 ) |
16 |
15
|
lsssubg |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐺 ∈ ( LSubSp ‘ 𝑀 ) ) → 𝐺 ∈ ( SubGrp ‘ 𝑀 ) ) |
17 |
5 6 16
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ∈ ( SubGrp ‘ 𝑀 ) ) |
18 |
1 13
|
eqger |
⊢ ( 𝐺 ∈ ( SubGrp ‘ 𝑀 ) → ( 𝑀 ~QG 𝐺 ) Er 𝐵 ) |
19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝑀 ~QG 𝐺 ) Er 𝐵 ) |
20 |
19 11
|
erth |
⊢ ( 𝜑 → ( 𝑈 ( 𝑀 ~QG 𝐺 ) 𝑉 ↔ [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) ) ) |
21 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
22 |
1 21 4 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑈 ∈ 𝐵 ) → ( 𝐾 · 𝑈 ) ∈ 𝐵 ) |
23 |
5 7 11 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 · 𝑈 ) ∈ 𝐵 ) |
24 |
19 23
|
erth |
⊢ ( 𝜑 → ( ( 𝐾 · 𝑈 ) ( 𝑀 ~QG 𝐺 ) ( 𝐾 · 𝑉 ) ↔ [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ) ) |
25 |
14 20 24
|
3imtr3d |
⊢ ( 𝜑 → ( [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) → [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ) ) |
26 |
|
eceq1 |
⊢ ( 𝑥 = 𝑈 → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) ) |
27 |
|
ovex |
⊢ ( 𝑀 ~QG 𝐺 ) ∈ V |
28 |
|
ecexg |
⊢ ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) ∈ V ) |
29 |
27 28
|
ax-mp |
⊢ [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) ∈ V |
30 |
26 10 29
|
fvmpt |
⊢ ( 𝑈 ∈ 𝐵 → ( 𝐹 ‘ 𝑈 ) = [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) ) |
31 |
11 30
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑈 ) = [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) ) |
32 |
|
eceq1 |
⊢ ( 𝑥 = 𝑉 → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) ) |
33 |
|
ecexg |
⊢ ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) ∈ V ) |
34 |
27 33
|
ax-mp |
⊢ [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) ∈ V |
35 |
32 10 34
|
fvmpt |
⊢ ( 𝑉 ∈ 𝐵 → ( 𝐹 ‘ 𝑉 ) = [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) ) |
36 |
12 35
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑉 ) = [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) ) |
37 |
31 36
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ↔ [ 𝑈 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑉 ] ( 𝑀 ~QG 𝐺 ) ) ) |
38 |
|
eceq1 |
⊢ ( 𝑥 = ( 𝐾 · 𝑈 ) → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) ) |
39 |
|
ecexg |
⊢ ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V ) |
40 |
27 39
|
ax-mp |
⊢ [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V |
41 |
38 10 40
|
fvmpt |
⊢ ( ( 𝐾 · 𝑈 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝐾 · 𝑈 ) ) = [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) ) |
42 |
23 41
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐾 · 𝑈 ) ) = [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) ) |
43 |
1 21 4 3
|
lmodvscl |
⊢ ( ( 𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐾 · 𝑉 ) ∈ 𝐵 ) |
44 |
5 7 12 43
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 · 𝑉 ) ∈ 𝐵 ) |
45 |
|
eceq1 |
⊢ ( 𝑥 = ( 𝐾 · 𝑉 ) → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ) |
46 |
|
ecexg |
⊢ ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V ) |
47 |
27 46
|
ax-mp |
⊢ [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V |
48 |
45 10 47
|
fvmpt |
⊢ ( ( 𝐾 · 𝑉 ) ∈ 𝐵 → ( 𝐹 ‘ ( 𝐾 · 𝑉 ) ) = [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ) |
49 |
44 48
|
syl |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐾 · 𝑉 ) ) = [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ) |
50 |
42 49
|
eqeq12d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝐾 · 𝑈 ) ) = ( 𝐹 ‘ ( 𝐾 · 𝑉 ) ) ↔ [ ( 𝐾 · 𝑈 ) ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑉 ) ] ( 𝑀 ~QG 𝐺 ) ) ) |
51 |
25 37 50
|
3imtr4d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) → ( 𝐹 ‘ ( 𝐾 · 𝑈 ) ) = ( 𝐹 ‘ ( 𝐾 · 𝑉 ) ) ) ) |