| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqgvscpbl.v |
|- B = ( Base ` M ) |
| 2 |
|
eqgvscpbl.e |
|- .~ = ( M ~QG G ) |
| 3 |
|
eqgvscpbl.s |
|- S = ( Base ` ( Scalar ` M ) ) |
| 4 |
|
eqgvscpbl.p |
|- .x. = ( .s ` M ) |
| 5 |
|
eqgvscpbl.m |
|- ( ph -> M e. LMod ) |
| 6 |
|
eqgvscpbl.g |
|- ( ph -> G e. ( LSubSp ` M ) ) |
| 7 |
|
eqgvscpbl.k |
|- ( ph -> K e. S ) |
| 8 |
|
qusvsval.n |
|- N = ( M /s ( M ~QG G ) ) |
| 9 |
|
qusvsval.m |
|- .xb = ( .s ` N ) |
| 10 |
|
qusvscpbl.f |
|- F = ( x e. B |-> [ x ] ( M ~QG G ) ) |
| 11 |
|
qusvscpbl.u |
|- ( ph -> U e. B ) |
| 12 |
|
qusvscpbl.v |
|- ( ph -> V e. B ) |
| 13 |
|
eqid |
|- ( M ~QG G ) = ( M ~QG G ) |
| 14 |
1 13 3 4 5 6 7
|
eqgvscpbl |
|- ( ph -> ( U ( M ~QG G ) V -> ( K .x. U ) ( M ~QG G ) ( K .x. V ) ) ) |
| 15 |
|
eqid |
|- ( LSubSp ` M ) = ( LSubSp ` M ) |
| 16 |
15
|
lsssubg |
|- ( ( M e. LMod /\ G e. ( LSubSp ` M ) ) -> G e. ( SubGrp ` M ) ) |
| 17 |
5 6 16
|
syl2anc |
|- ( ph -> G e. ( SubGrp ` M ) ) |
| 18 |
1 13
|
eqger |
|- ( G e. ( SubGrp ` M ) -> ( M ~QG G ) Er B ) |
| 19 |
17 18
|
syl |
|- ( ph -> ( M ~QG G ) Er B ) |
| 20 |
19 11
|
erth |
|- ( ph -> ( U ( M ~QG G ) V <-> [ U ] ( M ~QG G ) = [ V ] ( M ~QG G ) ) ) |
| 21 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
| 22 |
1 21 4 3
|
lmodvscl |
|- ( ( M e. LMod /\ K e. S /\ U e. B ) -> ( K .x. U ) e. B ) |
| 23 |
5 7 11 22
|
syl3anc |
|- ( ph -> ( K .x. U ) e. B ) |
| 24 |
19 23
|
erth |
|- ( ph -> ( ( K .x. U ) ( M ~QG G ) ( K .x. V ) <-> [ ( K .x. U ) ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) ) |
| 25 |
14 20 24
|
3imtr3d |
|- ( ph -> ( [ U ] ( M ~QG G ) = [ V ] ( M ~QG G ) -> [ ( K .x. U ) ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) ) |
| 26 |
|
eceq1 |
|- ( x = U -> [ x ] ( M ~QG G ) = [ U ] ( M ~QG G ) ) |
| 27 |
|
ovex |
|- ( M ~QG G ) e. _V |
| 28 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ U ] ( M ~QG G ) e. _V ) |
| 29 |
27 28
|
ax-mp |
|- [ U ] ( M ~QG G ) e. _V |
| 30 |
26 10 29
|
fvmpt |
|- ( U e. B -> ( F ` U ) = [ U ] ( M ~QG G ) ) |
| 31 |
11 30
|
syl |
|- ( ph -> ( F ` U ) = [ U ] ( M ~QG G ) ) |
| 32 |
|
eceq1 |
|- ( x = V -> [ x ] ( M ~QG G ) = [ V ] ( M ~QG G ) ) |
| 33 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ V ] ( M ~QG G ) e. _V ) |
| 34 |
27 33
|
ax-mp |
|- [ V ] ( M ~QG G ) e. _V |
| 35 |
32 10 34
|
fvmpt |
|- ( V e. B -> ( F ` V ) = [ V ] ( M ~QG G ) ) |
| 36 |
12 35
|
syl |
|- ( ph -> ( F ` V ) = [ V ] ( M ~QG G ) ) |
| 37 |
31 36
|
eqeq12d |
|- ( ph -> ( ( F ` U ) = ( F ` V ) <-> [ U ] ( M ~QG G ) = [ V ] ( M ~QG G ) ) ) |
| 38 |
|
eceq1 |
|- ( x = ( K .x. U ) -> [ x ] ( M ~QG G ) = [ ( K .x. U ) ] ( M ~QG G ) ) |
| 39 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ ( K .x. U ) ] ( M ~QG G ) e. _V ) |
| 40 |
27 39
|
ax-mp |
|- [ ( K .x. U ) ] ( M ~QG G ) e. _V |
| 41 |
38 10 40
|
fvmpt |
|- ( ( K .x. U ) e. B -> ( F ` ( K .x. U ) ) = [ ( K .x. U ) ] ( M ~QG G ) ) |
| 42 |
23 41
|
syl |
|- ( ph -> ( F ` ( K .x. U ) ) = [ ( K .x. U ) ] ( M ~QG G ) ) |
| 43 |
1 21 4 3
|
lmodvscl |
|- ( ( M e. LMod /\ K e. S /\ V e. B ) -> ( K .x. V ) e. B ) |
| 44 |
5 7 12 43
|
syl3anc |
|- ( ph -> ( K .x. V ) e. B ) |
| 45 |
|
eceq1 |
|- ( x = ( K .x. V ) -> [ x ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) |
| 46 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ ( K .x. V ) ] ( M ~QG G ) e. _V ) |
| 47 |
27 46
|
ax-mp |
|- [ ( K .x. V ) ] ( M ~QG G ) e. _V |
| 48 |
45 10 47
|
fvmpt |
|- ( ( K .x. V ) e. B -> ( F ` ( K .x. V ) ) = [ ( K .x. V ) ] ( M ~QG G ) ) |
| 49 |
44 48
|
syl |
|- ( ph -> ( F ` ( K .x. V ) ) = [ ( K .x. V ) ] ( M ~QG G ) ) |
| 50 |
42 49
|
eqeq12d |
|- ( ph -> ( ( F ` ( K .x. U ) ) = ( F ` ( K .x. V ) ) <-> [ ( K .x. U ) ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) ) |
| 51 |
25 37 50
|
3imtr4d |
|- ( ph -> ( ( F ` U ) = ( F ` V ) -> ( F ` ( K .x. U ) ) = ( F ` ( K .x. V ) ) ) ) |