Step |
Hyp |
Ref |
Expression |
1 |
|
eqgvscpbl.v |
|- B = ( Base ` M ) |
2 |
|
eqgvscpbl.e |
|- .~ = ( M ~QG G ) |
3 |
|
eqgvscpbl.s |
|- S = ( Base ` ( Scalar ` M ) ) |
4 |
|
eqgvscpbl.p |
|- .x. = ( .s ` M ) |
5 |
|
eqgvscpbl.m |
|- ( ph -> M e. LMod ) |
6 |
|
eqgvscpbl.g |
|- ( ph -> G e. ( LSubSp ` M ) ) |
7 |
|
eqgvscpbl.k |
|- ( ph -> K e. S ) |
8 |
|
qusscaval.n |
|- N = ( M /s ( M ~QG G ) ) |
9 |
|
qusscaval.m |
|- .xb = ( .s ` N ) |
10 |
|
qusvscpbl.f |
|- F = ( x e. B |-> [ x ] ( M ~QG G ) ) |
11 |
|
qusvscpbl.u |
|- ( ph -> U e. B ) |
12 |
|
qusvscpbl.v |
|- ( ph -> V e. B ) |
13 |
|
eqid |
|- ( M ~QG G ) = ( M ~QG G ) |
14 |
1 13 3 4 5 6 7
|
eqgvscpbl |
|- ( ph -> ( U ( M ~QG G ) V -> ( K .x. U ) ( M ~QG G ) ( K .x. V ) ) ) |
15 |
|
eqid |
|- ( LSubSp ` M ) = ( LSubSp ` M ) |
16 |
15
|
lsssubg |
|- ( ( M e. LMod /\ G e. ( LSubSp ` M ) ) -> G e. ( SubGrp ` M ) ) |
17 |
5 6 16
|
syl2anc |
|- ( ph -> G e. ( SubGrp ` M ) ) |
18 |
1 13
|
eqger |
|- ( G e. ( SubGrp ` M ) -> ( M ~QG G ) Er B ) |
19 |
17 18
|
syl |
|- ( ph -> ( M ~QG G ) Er B ) |
20 |
19 11
|
erth |
|- ( ph -> ( U ( M ~QG G ) V <-> [ U ] ( M ~QG G ) = [ V ] ( M ~QG G ) ) ) |
21 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
22 |
1 21 4 3
|
lmodvscl |
|- ( ( M e. LMod /\ K e. S /\ U e. B ) -> ( K .x. U ) e. B ) |
23 |
5 7 11 22
|
syl3anc |
|- ( ph -> ( K .x. U ) e. B ) |
24 |
19 23
|
erth |
|- ( ph -> ( ( K .x. U ) ( M ~QG G ) ( K .x. V ) <-> [ ( K .x. U ) ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) ) |
25 |
14 20 24
|
3imtr3d |
|- ( ph -> ( [ U ] ( M ~QG G ) = [ V ] ( M ~QG G ) -> [ ( K .x. U ) ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) ) |
26 |
|
eceq1 |
|- ( x = U -> [ x ] ( M ~QG G ) = [ U ] ( M ~QG G ) ) |
27 |
|
ovex |
|- ( M ~QG G ) e. _V |
28 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ U ] ( M ~QG G ) e. _V ) |
29 |
27 28
|
ax-mp |
|- [ U ] ( M ~QG G ) e. _V |
30 |
26 10 29
|
fvmpt |
|- ( U e. B -> ( F ` U ) = [ U ] ( M ~QG G ) ) |
31 |
11 30
|
syl |
|- ( ph -> ( F ` U ) = [ U ] ( M ~QG G ) ) |
32 |
|
eceq1 |
|- ( x = V -> [ x ] ( M ~QG G ) = [ V ] ( M ~QG G ) ) |
33 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ V ] ( M ~QG G ) e. _V ) |
34 |
27 33
|
ax-mp |
|- [ V ] ( M ~QG G ) e. _V |
35 |
32 10 34
|
fvmpt |
|- ( V e. B -> ( F ` V ) = [ V ] ( M ~QG G ) ) |
36 |
12 35
|
syl |
|- ( ph -> ( F ` V ) = [ V ] ( M ~QG G ) ) |
37 |
31 36
|
eqeq12d |
|- ( ph -> ( ( F ` U ) = ( F ` V ) <-> [ U ] ( M ~QG G ) = [ V ] ( M ~QG G ) ) ) |
38 |
|
eceq1 |
|- ( x = ( K .x. U ) -> [ x ] ( M ~QG G ) = [ ( K .x. U ) ] ( M ~QG G ) ) |
39 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ ( K .x. U ) ] ( M ~QG G ) e. _V ) |
40 |
27 39
|
ax-mp |
|- [ ( K .x. U ) ] ( M ~QG G ) e. _V |
41 |
38 10 40
|
fvmpt |
|- ( ( K .x. U ) e. B -> ( F ` ( K .x. U ) ) = [ ( K .x. U ) ] ( M ~QG G ) ) |
42 |
23 41
|
syl |
|- ( ph -> ( F ` ( K .x. U ) ) = [ ( K .x. U ) ] ( M ~QG G ) ) |
43 |
1 21 4 3
|
lmodvscl |
|- ( ( M e. LMod /\ K e. S /\ V e. B ) -> ( K .x. V ) e. B ) |
44 |
5 7 12 43
|
syl3anc |
|- ( ph -> ( K .x. V ) e. B ) |
45 |
|
eceq1 |
|- ( x = ( K .x. V ) -> [ x ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) |
46 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ ( K .x. V ) ] ( M ~QG G ) e. _V ) |
47 |
27 46
|
ax-mp |
|- [ ( K .x. V ) ] ( M ~QG G ) e. _V |
48 |
45 10 47
|
fvmpt |
|- ( ( K .x. V ) e. B -> ( F ` ( K .x. V ) ) = [ ( K .x. V ) ] ( M ~QG G ) ) |
49 |
44 48
|
syl |
|- ( ph -> ( F ` ( K .x. V ) ) = [ ( K .x. V ) ] ( M ~QG G ) ) |
50 |
42 49
|
eqeq12d |
|- ( ph -> ( ( F ` ( K .x. U ) ) = ( F ` ( K .x. V ) ) <-> [ ( K .x. U ) ] ( M ~QG G ) = [ ( K .x. V ) ] ( M ~QG G ) ) ) |
51 |
25 37 50
|
3imtr4d |
|- ( ph -> ( ( F ` U ) = ( F ` V ) -> ( F ` ( K .x. U ) ) = ( F ` ( K .x. V ) ) ) ) |