Step |
Hyp |
Ref |
Expression |
1 |
|
eqgvscpbl.v |
|
2 |
|
eqgvscpbl.e |
|
3 |
|
eqgvscpbl.s |
|
4 |
|
eqgvscpbl.p |
|
5 |
|
eqgvscpbl.m |
|
6 |
|
eqgvscpbl.g |
|
7 |
|
eqgvscpbl.k |
|
8 |
|
qusscaval.n |
|
9 |
|
qusscaval.m |
|
10 |
|
qusvscpbl.f |
|
11 |
|
qusvscpbl.u |
|
12 |
|
qusvscpbl.v |
|
13 |
|
eqid |
|
14 |
1 13 3 4 5 6 7
|
eqgvscpbl |
|
15 |
|
eqid |
|
16 |
15
|
lsssubg |
|
17 |
5 6 16
|
syl2anc |
|
18 |
1 13
|
eqger |
|
19 |
17 18
|
syl |
|
20 |
19 11
|
erth |
|
21 |
|
eqid |
|
22 |
1 21 4 3
|
lmodvscl |
|
23 |
5 7 11 22
|
syl3anc |
|
24 |
19 23
|
erth |
|
25 |
14 20 24
|
3imtr3d |
|
26 |
|
eceq1 |
|
27 |
|
ovex |
|
28 |
|
ecexg |
|
29 |
27 28
|
ax-mp |
|
30 |
26 10 29
|
fvmpt |
|
31 |
11 30
|
syl |
|
32 |
|
eceq1 |
|
33 |
|
ecexg |
|
34 |
27 33
|
ax-mp |
|
35 |
32 10 34
|
fvmpt |
|
36 |
12 35
|
syl |
|
37 |
31 36
|
eqeq12d |
|
38 |
|
eceq1 |
|
39 |
|
ecexg |
|
40 |
27 39
|
ax-mp |
|
41 |
38 10 40
|
fvmpt |
|
42 |
23 41
|
syl |
|
43 |
1 21 4 3
|
lmodvscl |
|
44 |
5 7 12 43
|
syl3anc |
|
45 |
|
eceq1 |
|
46 |
|
ecexg |
|
47 |
27 46
|
ax-mp |
|
48 |
45 10 47
|
fvmpt |
|
49 |
44 48
|
syl |
|
50 |
42 49
|
eqeq12d |
|
51 |
25 37 50
|
3imtr4d |
|