Metamath Proof Explorer


Theorem eqgvscpbl

Description: The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v B=BaseM
eqgvscpbl.e ˙=M~QGG
eqgvscpbl.s S=BaseScalarM
eqgvscpbl.p ·˙=M
eqgvscpbl.m φMLMod
eqgvscpbl.g φGLSubSpM
eqgvscpbl.k φKS
Assertion eqgvscpbl φX˙YK·˙X˙K·˙Y

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v B=BaseM
2 eqgvscpbl.e ˙=M~QGG
3 eqgvscpbl.s S=BaseScalarM
4 eqgvscpbl.p ·˙=M
5 eqgvscpbl.m φMLMod
6 eqgvscpbl.g φGLSubSpM
7 eqgvscpbl.k φKS
8 5 adantr φXBYBinvgMX+MYGMLMod
9 7 adantr φXBYBinvgMX+MYGKS
10 simpr1 φXBYBinvgMX+MYGXB
11 eqid ScalarM=ScalarM
12 1 11 4 3 lmodvscl MLModKSXBK·˙XB
13 8 9 10 12 syl3anc φXBYBinvgMX+MYGK·˙XB
14 simpr2 φXBYBinvgMX+MYGYB
15 1 11 4 3 lmodvscl MLModKSYBK·˙YB
16 8 9 14 15 syl3anc φXBYBinvgMX+MYGK·˙YB
17 5 ad2antrr φXBYBMLMod
18 7 ad2antrr φXBYBKS
19 lmodgrp MLModMGrp
20 17 19 syl φXBYBMGrp
21 simplr φXBYBXB
22 eqid invgM=invgM
23 1 22 grpinvcl MGrpXBinvgMXB
24 20 21 23 syl2anc φXBYBinvgMXB
25 simpr φXBYBYB
26 eqid +M=+M
27 1 26 11 4 3 lmodvsdi MLModKSinvgMXBYBK·˙invgMX+MY=K·˙invgMX+MK·˙Y
28 17 18 24 25 27 syl13anc φXBYBK·˙invgMX+MY=K·˙invgMX+MK·˙Y
29 1 11 4 22 3 lmodvsinv2 MLModKSXBK·˙invgMX=invgMK·˙X
30 17 18 21 29 syl3anc φXBYBK·˙invgMX=invgMK·˙X
31 30 oveq1d φXBYBK·˙invgMX+MK·˙Y=invgMK·˙X+MK·˙Y
32 28 31 eqtrd φXBYBK·˙invgMX+MY=invgMK·˙X+MK·˙Y
33 32 anasss φXBYBK·˙invgMX+MY=invgMK·˙X+MK·˙Y
34 33 3adantr3 φXBYBinvgMX+MYGK·˙invgMX+MY=invgMK·˙X+MK·˙Y
35 6 adantr φXBYBinvgMX+MYGGLSubSpM
36 simpr3 φXBYBinvgMX+MYGinvgMX+MYG
37 eqid LSubSpM=LSubSpM
38 11 4 3 37 lssvscl MLModGLSubSpMKSinvgMX+MYGK·˙invgMX+MYG
39 8 35 9 36 38 syl22anc φXBYBinvgMX+MYGK·˙invgMX+MYG
40 34 39 eqeltrrd φXBYBinvgMX+MYGinvgMK·˙X+MK·˙YG
41 13 16 40 3jca φXBYBinvgMX+MYGK·˙XBK·˙YBinvgMK·˙X+MK·˙YG
42 41 ex φXBYBinvgMX+MYGK·˙XBK·˙YBinvgMK·˙X+MK·˙YG
43 5 19 syl φMGrp
44 37 lsssubg MLModGLSubSpMGSubGrpM
45 5 6 44 syl2anc φGSubGrpM
46 1 subgss GSubGrpMGB
47 45 46 syl φGB
48 1 22 26 2 eqgval MGrpGBX˙YXBYBinvgMX+MYG
49 43 47 48 syl2anc φX˙YXBYBinvgMX+MYG
50 1 22 26 2 eqgval MGrpGBK·˙X˙K·˙YK·˙XBK·˙YBinvgMK·˙X+MK·˙YG
51 43 47 50 syl2anc φK·˙X˙K·˙YK·˙XBK·˙YBinvgMK·˙X+MK·˙YG
52 42 49 51 3imtr4d φX˙YK·˙X˙K·˙Y