Description: The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqgvscpbl.v | |
|
eqgvscpbl.e | |
||
eqgvscpbl.s | |
||
eqgvscpbl.p | |
||
eqgvscpbl.m | |
||
eqgvscpbl.g | |
||
eqgvscpbl.k | |
||
Assertion | eqgvscpbl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqgvscpbl.v | |
|
2 | eqgvscpbl.e | |
|
3 | eqgvscpbl.s | |
|
4 | eqgvscpbl.p | |
|
5 | eqgvscpbl.m | |
|
6 | eqgvscpbl.g | |
|
7 | eqgvscpbl.k | |
|
8 | 5 | adantr | |
9 | 7 | adantr | |
10 | simpr1 | |
|
11 | eqid | |
|
12 | 1 11 4 3 | lmodvscl | |
13 | 8 9 10 12 | syl3anc | |
14 | simpr2 | |
|
15 | 1 11 4 3 | lmodvscl | |
16 | 8 9 14 15 | syl3anc | |
17 | 5 | ad2antrr | |
18 | 7 | ad2antrr | |
19 | lmodgrp | |
|
20 | 17 19 | syl | |
21 | simplr | |
|
22 | eqid | |
|
23 | 1 22 | grpinvcl | |
24 | 20 21 23 | syl2anc | |
25 | simpr | |
|
26 | eqid | |
|
27 | 1 26 11 4 3 | lmodvsdi | |
28 | 17 18 24 25 27 | syl13anc | |
29 | 1 11 4 22 3 | lmodvsinv2 | |
30 | 17 18 21 29 | syl3anc | |
31 | 30 | oveq1d | |
32 | 28 31 | eqtrd | |
33 | 32 | anasss | |
34 | 33 | 3adantr3 | |
35 | 6 | adantr | |
36 | simpr3 | |
|
37 | eqid | |
|
38 | 11 4 3 37 | lssvscl | |
39 | 8 35 9 36 38 | syl22anc | |
40 | 34 39 | eqeltrrd | |
41 | 13 16 40 | 3jca | |
42 | 41 | ex | |
43 | 5 19 | syl | |
44 | 37 | lsssubg | |
45 | 5 6 44 | syl2anc | |
46 | 1 | subgss | |
47 | 45 46 | syl | |
48 | 1 22 26 2 | eqgval | |
49 | 43 47 48 | syl2anc | |
50 | 1 22 26 2 | eqgval | |
51 | 43 47 50 | syl2anc | |
52 | 42 49 51 | 3imtr4d | |