| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqgvscpbl.v |
|
| 2 |
|
eqgvscpbl.e |
|
| 3 |
|
eqgvscpbl.s |
|
| 4 |
|
eqgvscpbl.p |
|
| 5 |
|
eqgvscpbl.m |
|
| 6 |
|
eqgvscpbl.g |
|
| 7 |
|
eqgvscpbl.k |
|
| 8 |
5
|
adantr |
|
| 9 |
7
|
adantr |
|
| 10 |
|
simpr1 |
|
| 11 |
|
eqid |
|
| 12 |
1 11 4 3
|
lmodvscl |
|
| 13 |
8 9 10 12
|
syl3anc |
|
| 14 |
|
simpr2 |
|
| 15 |
1 11 4 3
|
lmodvscl |
|
| 16 |
8 9 14 15
|
syl3anc |
|
| 17 |
5
|
ad2antrr |
|
| 18 |
7
|
ad2antrr |
|
| 19 |
|
lmodgrp |
|
| 20 |
17 19
|
syl |
|
| 21 |
|
simplr |
|
| 22 |
|
eqid |
|
| 23 |
1 22
|
grpinvcl |
|
| 24 |
20 21 23
|
syl2anc |
|
| 25 |
|
simpr |
|
| 26 |
|
eqid |
|
| 27 |
1 26 11 4 3
|
lmodvsdi |
|
| 28 |
17 18 24 25 27
|
syl13anc |
|
| 29 |
1 11 4 22 3
|
lmodvsinv2 |
|
| 30 |
17 18 21 29
|
syl3anc |
|
| 31 |
30
|
oveq1d |
|
| 32 |
28 31
|
eqtrd |
|
| 33 |
32
|
anasss |
|
| 34 |
33
|
3adantr3 |
|
| 35 |
6
|
adantr |
|
| 36 |
|
simpr3 |
|
| 37 |
|
eqid |
|
| 38 |
11 4 3 37
|
lssvscl |
|
| 39 |
8 35 9 36 38
|
syl22anc |
|
| 40 |
34 39
|
eqeltrrd |
|
| 41 |
13 16 40
|
3jca |
|
| 42 |
41
|
ex |
|
| 43 |
5 19
|
syl |
|
| 44 |
37
|
lsssubg |
|
| 45 |
5 6 44
|
syl2anc |
|
| 46 |
1
|
subgss |
|
| 47 |
45 46
|
syl |
|
| 48 |
1 22 26 2
|
eqgval |
|
| 49 |
43 47 48
|
syl2anc |
|
| 50 |
1 22 26 2
|
eqgval |
|
| 51 |
43 47 50
|
syl2anc |
|
| 52 |
42 49 51
|
3imtr4d |
|