Step |
Hyp |
Ref |
Expression |
1 |
|
eqgvscpbl.v |
|- B = ( Base ` M ) |
2 |
|
eqgvscpbl.e |
|- .~ = ( M ~QG G ) |
3 |
|
eqgvscpbl.s |
|- S = ( Base ` ( Scalar ` M ) ) |
4 |
|
eqgvscpbl.p |
|- .x. = ( .s ` M ) |
5 |
|
eqgvscpbl.m |
|- ( ph -> M e. LMod ) |
6 |
|
eqgvscpbl.g |
|- ( ph -> G e. ( LSubSp ` M ) ) |
7 |
|
eqgvscpbl.k |
|- ( ph -> K e. S ) |
8 |
|
qusscaval.n |
|- N = ( M /s ( M ~QG G ) ) |
9 |
|
qusscaval.m |
|- .xb = ( .s ` N ) |
10 |
8
|
a1i |
|- ( ph -> N = ( M /s ( M ~QG G ) ) ) |
11 |
1
|
a1i |
|- ( ph -> B = ( Base ` M ) ) |
12 |
|
eqid |
|- ( x e. B |-> [ x ] ( M ~QG G ) ) = ( x e. B |-> [ x ] ( M ~QG G ) ) |
13 |
|
ovex |
|- ( M ~QG G ) e. _V |
14 |
13
|
a1i |
|- ( ph -> ( M ~QG G ) e. _V ) |
15 |
10 11 12 14 5
|
qusval |
|- ( ph -> N = ( ( x e. B |-> [ x ] ( M ~QG G ) ) "s M ) ) |
16 |
10 11 12 14 5
|
quslem |
|- ( ph -> ( x e. B |-> [ x ] ( M ~QG G ) ) : B -onto-> ( B /. ( M ~QG G ) ) ) |
17 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
18 |
5
|
adantr |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> M e. LMod ) |
19 |
6
|
adantr |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> G e. ( LSubSp ` M ) ) |
20 |
|
simpr1 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> k e. S ) |
21 |
|
simpr2 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> u e. B ) |
22 |
|
simpr3 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> v e. B ) |
23 |
1 2 3 4 18 19 20 8 9 12 21 22
|
qusvscpbl |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> ( ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` u ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` v ) -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( k .x. u ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( k .x. v ) ) ) ) |
24 |
15 11 16 5 17 3 4 9 23
|
imasvscaval |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) ) |
25 |
|
eceq1 |
|- ( x = X -> [ x ] ( M ~QG G ) = [ X ] ( M ~QG G ) ) |
26 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ X ] ( M ~QG G ) e. _V ) |
27 |
13 26
|
ax-mp |
|- [ X ] ( M ~QG G ) e. _V |
28 |
25 12 27
|
fvmpt |
|- ( X e. B -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) = [ X ] ( M ~QG G ) ) |
29 |
28
|
3ad2ant3 |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) = [ X ] ( M ~QG G ) ) |
30 |
29
|
oveq2d |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( K .xb [ X ] ( M ~QG G ) ) ) |
31 |
1 17 4 3
|
lmodvscl |
|- ( ( M e. LMod /\ K e. S /\ X e. B ) -> ( K .x. X ) e. B ) |
32 |
5 31
|
syl3an1 |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( K .x. X ) e. B ) |
33 |
|
eceq1 |
|- ( x = ( K .x. X ) -> [ x ] ( M ~QG G ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
34 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ ( K .x. X ) ] ( M ~QG G ) e. _V ) |
35 |
13 34
|
ax-mp |
|- [ ( K .x. X ) ] ( M ~QG G ) e. _V |
36 |
33 12 35
|
fvmpt |
|- ( ( K .x. X ) e. B -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
37 |
32 36
|
syl |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
38 |
24 30 37
|
3eqtr3d |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( K .xb [ X ] ( M ~QG G ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |