Metamath Proof Explorer


Theorem qusscaval

Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v 𝐵 = ( Base ‘ 𝑀 )
eqgvscpbl.e = ( 𝑀 ~QG 𝐺 )
eqgvscpbl.s 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) )
eqgvscpbl.p · = ( ·𝑠𝑀 )
eqgvscpbl.m ( 𝜑𝑀 ∈ LMod )
eqgvscpbl.g ( 𝜑𝐺 ∈ ( LSubSp ‘ 𝑀 ) )
eqgvscpbl.k ( 𝜑𝐾𝑆 )
qusscaval.n 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) )
qusscaval.m = ( ·𝑠𝑁 )
Assertion qusscaval ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( 𝐾 [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v 𝐵 = ( Base ‘ 𝑀 )
2 eqgvscpbl.e = ( 𝑀 ~QG 𝐺 )
3 eqgvscpbl.s 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) )
4 eqgvscpbl.p · = ( ·𝑠𝑀 )
5 eqgvscpbl.m ( 𝜑𝑀 ∈ LMod )
6 eqgvscpbl.g ( 𝜑𝐺 ∈ ( LSubSp ‘ 𝑀 ) )
7 eqgvscpbl.k ( 𝜑𝐾𝑆 )
8 qusscaval.n 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) )
9 qusscaval.m = ( ·𝑠𝑁 )
10 8 a1i ( 𝜑𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) )
11 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝑀 ) )
12 eqid ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) )
13 ovex ( 𝑀 ~QG 𝐺 ) ∈ V
14 13 a1i ( 𝜑 → ( 𝑀 ~QG 𝐺 ) ∈ V )
15 10 11 12 14 5 qusval ( 𝜑𝑁 = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) “s 𝑀 ) )
16 10 11 12 14 5 quslem ( 𝜑 → ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) : 𝐵onto→ ( 𝐵 / ( 𝑀 ~QG 𝐺 ) ) )
17 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
18 5 adantr ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑀 ∈ LMod )
19 6 adantr ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝑀 ) )
20 simpr1 ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑘𝑆 )
21 simpr2 ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑢𝐵 )
22 simpr3 ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑣𝐵 )
23 1 2 3 4 18 19 20 8 9 12 21 22 qusvscpbl ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → ( ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑢 ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑣 ) → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝑘 · 𝑢 ) ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝑘 · 𝑣 ) ) ) )
24 15 11 16 5 17 3 4 9 23 imasvscaval ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( 𝐾 ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) )
25 eceq1 ( 𝑥 = 𝑋 → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) )
26 ecexg ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ∈ V )
27 13 26 ax-mp [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ∈ V
28 25 12 27 fvmpt ( 𝑋𝐵 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) )
29 28 3ad2ant3 ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) )
30 29 oveq2d ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( 𝐾 ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( 𝐾 [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) )
31 1 17 4 3 lmodvscl ( ( 𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵 ) → ( 𝐾 · 𝑋 ) ∈ 𝐵 )
32 5 31 syl3an1 ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( 𝐾 · 𝑋 ) ∈ 𝐵 )
33 eceq1 ( 𝑥 = ( 𝐾 · 𝑋 ) → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )
34 ecexg ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V )
35 13 34 ax-mp [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V
36 33 12 35 fvmpt ( ( 𝐾 · 𝑋 ) ∈ 𝐵 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )
37 32 36 syl ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )
38 24 30 37 3eqtr3d ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( 𝐾 [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )