Step |
Hyp |
Ref |
Expression |
1 |
|
imaslmod.u |
|- ( ph -> N = ( F "s M ) ) |
2 |
|
imaslmod.v |
|- V = ( Base ` M ) |
3 |
|
imaslmod.k |
|- S = ( Base ` ( Scalar ` M ) ) |
4 |
|
imaslmod.p |
|- .+ = ( +g ` M ) |
5 |
|
imaslmod.t |
|- .x. = ( .s ` M ) |
6 |
|
imaslmod.o |
|- .0. = ( 0g ` M ) |
7 |
|
imaslmod.f |
|- ( ph -> F : V -onto-> B ) |
8 |
|
imaslmod.e1 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
9 |
|
imaslmod.e2 |
|- ( ( ph /\ ( k e. S /\ a e. V /\ b e. V ) ) -> ( ( F ` a ) = ( F ` b ) -> ( F ` ( k .x. a ) ) = ( F ` ( k .x. b ) ) ) ) |
10 |
|
imaslmod.l |
|- ( ph -> M e. LMod ) |
11 |
2
|
a1i |
|- ( ph -> V = ( Base ` M ) ) |
12 |
1 11 7 10
|
imasbas |
|- ( ph -> B = ( Base ` N ) ) |
13 |
|
eqidd |
|- ( ph -> ( +g ` N ) = ( +g ` N ) ) |
14 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
15 |
1 11 7 10 14
|
imassca |
|- ( ph -> ( Scalar ` M ) = ( Scalar ` N ) ) |
16 |
|
eqidd |
|- ( ph -> ( .s ` N ) = ( .s ` N ) ) |
17 |
3
|
a1i |
|- ( ph -> S = ( Base ` ( Scalar ` M ) ) ) |
18 |
|
eqidd |
|- ( ph -> ( +g ` ( Scalar ` M ) ) = ( +g ` ( Scalar ` M ) ) ) |
19 |
|
eqidd |
|- ( ph -> ( .r ` ( Scalar ` M ) ) = ( .r ` ( Scalar ` M ) ) ) |
20 |
|
eqidd |
|- ( ph -> ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) |
21 |
14
|
lmodring |
|- ( M e. LMod -> ( Scalar ` M ) e. Ring ) |
22 |
10 21
|
syl |
|- ( ph -> ( Scalar ` M ) e. Ring ) |
23 |
4
|
a1i |
|- ( ph -> .+ = ( +g ` M ) ) |
24 |
|
lmodgrp |
|- ( M e. LMod -> M e. Grp ) |
25 |
10 24
|
syl |
|- ( ph -> M e. Grp ) |
26 |
1 11 23 7 8 25 6
|
imasgrp |
|- ( ph -> ( N e. Grp /\ ( F ` .0. ) = ( 0g ` N ) ) ) |
27 |
26
|
simpld |
|- ( ph -> N e. Grp ) |
28 |
|
eqid |
|- ( .s ` N ) = ( .s ` N ) |
29 |
10
|
adantr |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> M e. LMod ) |
30 |
|
simprl |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> k e. S ) |
31 |
|
simprr |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> b e. V ) |
32 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ k e. S /\ b e. V ) -> ( k .x. b ) e. V ) |
33 |
29 30 31 32
|
syl3anc |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> ( k .x. b ) e. V ) |
34 |
1 11 7 10 14 3 5 28 9 33
|
imasvscaf |
|- ( ph -> ( .s ` N ) : ( S X. B ) --> B ) |
35 |
34
|
fovcld |
|- ( ( ph /\ u e. S /\ v e. B ) -> ( u ( .s ` N ) v ) e. B ) |
36 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ph ) |
37 |
|
simpllr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u e. S /\ v e. B /\ w e. B ) ) |
38 |
37
|
simp1d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> u e. S ) |
39 |
38
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> u e. S ) |
40 |
36 25
|
syl |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> M e. Grp ) |
41 |
|
simplr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> y e. V ) |
42 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> z e. V ) |
43 |
2 4
|
grpcl |
|- ( ( M e. Grp /\ y e. V /\ z e. V ) -> ( y .+ z ) e. V ) |
44 |
40 41 42 43
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( y .+ z ) e. V ) |
45 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ ( y .+ z ) e. V ) -> ( u ( .s ` N ) ( F ` ( y .+ z ) ) ) = ( F ` ( u .x. ( y .+ z ) ) ) ) |
46 |
36 39 44 45
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` ( y .+ z ) ) ) = ( F ` ( u .x. ( y .+ z ) ) ) ) |
47 |
|
eqid |
|- ( +g ` N ) = ( +g ` N ) |
48 |
7 8 1 11 10 4 47
|
imasaddval |
|- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` N ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
49 |
36 41 42 48
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` y ) ( +g ` N ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
50 |
|
simpr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` y ) = v ) |
51 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` z ) = w ) |
52 |
50 51
|
oveq12d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` y ) ( +g ` N ) ( F ` z ) ) = ( v ( +g ` N ) w ) ) |
53 |
49 52
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( y .+ z ) ) = ( v ( +g ` N ) w ) ) |
54 |
53
|
oveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` ( y .+ z ) ) ) = ( u ( .s ` N ) ( v ( +g ` N ) w ) ) ) |
55 |
36 10
|
syl |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> M e. LMod ) |
56 |
2 4 14 5 3
|
lmodvsdi |
|- ( ( M e. LMod /\ ( u e. S /\ y e. V /\ z e. V ) ) -> ( u .x. ( y .+ z ) ) = ( ( u .x. y ) .+ ( u .x. z ) ) ) |
57 |
55 39 41 42 56
|
syl13anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u .x. ( y .+ z ) ) = ( ( u .x. y ) .+ ( u .x. z ) ) ) |
58 |
57
|
fveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( u .x. ( y .+ z ) ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
59 |
46 54 58
|
3eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
60 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ u e. S /\ y e. V ) -> ( u .x. y ) e. V ) |
61 |
55 39 41 60
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u .x. y ) e. V ) |
62 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ u e. S /\ z e. V ) -> ( u .x. z ) e. V ) |
63 |
55 39 42 62
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u .x. z ) e. V ) |
64 |
7 8 1 11 10 4 47
|
imasaddval |
|- ( ( ph /\ ( u .x. y ) e. V /\ ( u .x. z ) e. V ) -> ( ( F ` ( u .x. y ) ) ( +g ` N ) ( F ` ( u .x. z ) ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
65 |
36 61 63 64
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` ( u .x. y ) ) ( +g ` N ) ( F ` ( u .x. z ) ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
66 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ y e. V ) -> ( u ( .s ` N ) ( F ` y ) ) = ( F ` ( u .x. y ) ) ) |
67 |
36 39 41 66
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` y ) ) = ( F ` ( u .x. y ) ) ) |
68 |
50
|
oveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` y ) ) = ( u ( .s ` N ) v ) ) |
69 |
67 68
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( u .x. y ) ) = ( u ( .s ` N ) v ) ) |
70 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ z e. V ) -> ( u ( .s ` N ) ( F ` z ) ) = ( F ` ( u .x. z ) ) ) |
71 |
36 39 42 70
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` z ) ) = ( F ` ( u .x. z ) ) ) |
72 |
51
|
oveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` z ) ) = ( u ( .s ` N ) w ) ) |
73 |
71 72
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( u .x. z ) ) = ( u ( .s ` N ) w ) ) |
74 |
69 73
|
oveq12d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` ( u .x. y ) ) ( +g ` N ) ( F ` ( u .x. z ) ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
75 |
59 65 74
|
3eqtr2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
76 |
|
simplll |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ph ) |
77 |
37
|
simp2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> v e. B ) |
78 |
|
fofn |
|- ( F : V -onto-> B -> F Fn V ) |
79 |
7 78
|
syl |
|- ( ph -> F Fn V ) |
80 |
|
simpr |
|- ( ( ph /\ v e. B ) -> v e. B ) |
81 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
82 |
7 81
|
syl |
|- ( ph -> ran F = B ) |
83 |
82
|
adantr |
|- ( ( ph /\ v e. B ) -> ran F = B ) |
84 |
80 83
|
eleqtrrd |
|- ( ( ph /\ v e. B ) -> v e. ran F ) |
85 |
|
fvelrnb |
|- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
86 |
85
|
biimpa |
|- ( ( F Fn V /\ v e. ran F ) -> E. y e. V ( F ` y ) = v ) |
87 |
79 84 86
|
syl2an2r |
|- ( ( ph /\ v e. B ) -> E. y e. V ( F ` y ) = v ) |
88 |
76 77 87
|
syl2anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> E. y e. V ( F ` y ) = v ) |
89 |
75 88
|
r19.29a |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
90 |
|
simpr |
|- ( ( ph /\ w e. B ) -> w e. B ) |
91 |
82
|
adantr |
|- ( ( ph /\ w e. B ) -> ran F = B ) |
92 |
90 91
|
eleqtrrd |
|- ( ( ph /\ w e. B ) -> w e. ran F ) |
93 |
|
fvelrnb |
|- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
94 |
93
|
biimpa |
|- ( ( F Fn V /\ w e. ran F ) -> E. z e. V ( F ` z ) = w ) |
95 |
79 92 94
|
syl2an2r |
|- ( ( ph /\ w e. B ) -> E. z e. V ( F ` z ) = w ) |
96 |
95
|
3ad2antr3 |
|- ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) -> E. z e. V ( F ` z ) = w ) |
97 |
89 96
|
r19.29a |
|- ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
98 |
|
simplll |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ph ) |
99 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> M e. LMod ) |
100 |
|
simpllr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u e. S /\ v e. S /\ w e. B ) ) |
101 |
100
|
simp1d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> u e. S ) |
102 |
100
|
simp2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> v e. S ) |
103 |
|
eqid |
|- ( +g ` ( Scalar ` M ) ) = ( +g ` ( Scalar ` M ) ) |
104 |
14 3 103
|
lmodacl |
|- ( ( M e. LMod /\ u e. S /\ v e. S ) -> ( u ( +g ` ( Scalar ` M ) ) v ) e. S ) |
105 |
99 101 102 104
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( +g ` ( Scalar ` M ) ) v ) e. S ) |
106 |
|
simplr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> z e. V ) |
107 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ ( u ( +g ` ( Scalar ` M ) ) v ) e. S /\ z e. V ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
108 |
98 105 106 107
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
109 |
|
simpr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
110 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) ) |
111 |
2 4 14 5 3 103
|
lmodvsdir |
|- ( ( M e. LMod /\ ( u e. S /\ v e. S /\ z e. V ) ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) = ( ( u .x. z ) .+ ( v .x. z ) ) ) |
112 |
99 101 102 106 111
|
syl13anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) = ( ( u .x. z ) .+ ( v .x. z ) ) ) |
113 |
112
|
fveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) = ( F ` ( ( u .x. z ) .+ ( v .x. z ) ) ) ) |
114 |
99 101 106 62
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u .x. z ) e. V ) |
115 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ v e. S /\ z e. V ) -> ( v .x. z ) e. V ) |
116 |
99 102 106 115
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( v .x. z ) e. V ) |
117 |
7 8 1 11 10 4 47
|
imasaddval |
|- ( ( ph /\ ( u .x. z ) e. V /\ ( v .x. z ) e. V ) -> ( ( F ` ( u .x. z ) ) ( +g ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( ( u .x. z ) .+ ( v .x. z ) ) ) ) |
118 |
98 114 116 117
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( F ` ( u .x. z ) ) ( +g ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( ( u .x. z ) .+ ( v .x. z ) ) ) ) |
119 |
98 101 106 70
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( F ` z ) ) = ( F ` ( u .x. z ) ) ) |
120 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( F ` z ) ) = ( u ( .s ` N ) w ) ) |
121 |
119 120
|
eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( u .x. z ) ) = ( u ( .s ` N ) w ) ) |
122 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ v e. S /\ z e. V ) -> ( v ( .s ` N ) ( F ` z ) ) = ( F ` ( v .x. z ) ) ) |
123 |
98 102 106 122
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( v ( .s ` N ) ( F ` z ) ) = ( F ` ( v .x. z ) ) ) |
124 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( v ( .s ` N ) ( F ` z ) ) = ( v ( .s ` N ) w ) ) |
125 |
123 124
|
eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( v .x. z ) ) = ( v ( .s ` N ) w ) ) |
126 |
121 125
|
oveq12d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( F ` ( u .x. z ) ) ( +g ` N ) ( F ` ( v .x. z ) ) ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
127 |
113 118 126
|
3eqtr2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
128 |
108 110 127
|
3eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
129 |
95
|
3ad2antr3 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) -> E. z e. V ( F ` z ) = w ) |
130 |
128 129
|
r19.29a |
|- ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
131 |
|
eqid |
|- ( .r ` ( Scalar ` M ) ) = ( .r ` ( Scalar ` M ) ) |
132 |
14 3 131
|
lmodmcl |
|- ( ( M e. LMod /\ u e. S /\ v e. S ) -> ( u ( .r ` ( Scalar ` M ) ) v ) e. S ) |
133 |
99 101 102 132
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .r ` ( Scalar ` M ) ) v ) e. S ) |
134 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ ( u ( .r ` ( Scalar ` M ) ) v ) e. S /\ z e. V ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
135 |
98 133 106 134
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
136 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) ) |
137 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ ( v .x. z ) e. V ) -> ( u ( .s ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( u .x. ( v .x. z ) ) ) ) |
138 |
98 101 116 137
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( u .x. ( v .x. z ) ) ) ) |
139 |
123
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) = ( u ( .s ` N ) ( F ` ( v .x. z ) ) ) ) |
140 |
2 14 5 3 131
|
lmodvsass |
|- ( ( M e. LMod /\ ( u e. S /\ v e. S /\ z e. V ) ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) = ( u .x. ( v .x. z ) ) ) |
141 |
99 101 102 106 140
|
syl13anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) = ( u .x. ( v .x. z ) ) ) |
142 |
141
|
fveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) = ( F ` ( u .x. ( v .x. z ) ) ) ) |
143 |
138 139 142
|
3eqtr4rd |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) = ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) ) |
144 |
135 136 143
|
3eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) ) |
145 |
124
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) = ( u ( .s ` N ) ( v ( .s ` N ) w ) ) ) |
146 |
144 145
|
eqtrd |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( u ( .s ` N ) ( v ( .s ` N ) w ) ) ) |
147 |
146 129
|
r19.29a |
|- ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( u ( .s ` N ) ( v ( .s ` N ) w ) ) ) |
148 |
|
simplll |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ph ) |
149 |
|
eqid |
|- ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) |
150 |
3 149
|
ringidcl |
|- ( ( Scalar ` M ) e. Ring -> ( 1r ` ( Scalar ` M ) ) e. S ) |
151 |
22 150
|
syl |
|- ( ph -> ( 1r ` ( Scalar ` M ) ) e. S ) |
152 |
151
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( 1r ` ( Scalar ` M ) ) e. S ) |
153 |
|
simplr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> x e. V ) |
154 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ ( 1r ` ( Scalar ` M ) ) e. S /\ x e. V ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) ( F ` x ) ) = ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) ) |
155 |
148 152 153 154
|
syl3anc |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) ( F ` x ) ) = ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) ) |
156 |
|
simpr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( F ` x ) = u ) |
157 |
156
|
oveq2d |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) ( F ` x ) ) = ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) u ) ) |
158 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> M e. LMod ) |
159 |
2 14 5 149
|
lmodvs1 |
|- ( ( M e. LMod /\ x e. V ) -> ( ( 1r ` ( Scalar ` M ) ) .x. x ) = x ) |
160 |
158 153 159
|
syl2anc |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) .x. x ) = x ) |
161 |
160
|
fveq2d |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) = ( F ` x ) ) |
162 |
161 156
|
eqtrd |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) = u ) |
163 |
155 157 162
|
3eqtr3d |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) u ) = u ) |
164 |
|
simpr |
|- ( ( ph /\ u e. B ) -> u e. B ) |
165 |
82
|
adantr |
|- ( ( ph /\ u e. B ) -> ran F = B ) |
166 |
164 165
|
eleqtrrd |
|- ( ( ph /\ u e. B ) -> u e. ran F ) |
167 |
|
fvelrnb |
|- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
168 |
167
|
biimpa |
|- ( ( F Fn V /\ u e. ran F ) -> E. x e. V ( F ` x ) = u ) |
169 |
79 166 168
|
syl2an2r |
|- ( ( ph /\ u e. B ) -> E. x e. V ( F ` x ) = u ) |
170 |
163 169
|
r19.29a |
|- ( ( ph /\ u e. B ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) u ) = u ) |
171 |
12 13 15 16 17 18 19 20 22 27 35 97 130 147 170
|
islmodd |
|- ( ph -> N e. LMod ) |