| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imaslmod.u |
|- ( ph -> N = ( F "s M ) ) |
| 2 |
|
imaslmod.v |
|- V = ( Base ` M ) |
| 3 |
|
imaslmod.k |
|- S = ( Base ` ( Scalar ` M ) ) |
| 4 |
|
imaslmod.p |
|- .+ = ( +g ` M ) |
| 5 |
|
imaslmod.t |
|- .x. = ( .s ` M ) |
| 6 |
|
imaslmod.o |
|- .0. = ( 0g ` M ) |
| 7 |
|
imaslmod.f |
|- ( ph -> F : V -onto-> B ) |
| 8 |
|
imaslmod.e1 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
| 9 |
|
imaslmod.e2 |
|- ( ( ph /\ ( k e. S /\ a e. V /\ b e. V ) ) -> ( ( F ` a ) = ( F ` b ) -> ( F ` ( k .x. a ) ) = ( F ` ( k .x. b ) ) ) ) |
| 10 |
|
imaslmod.l |
|- ( ph -> M e. LMod ) |
| 11 |
2
|
a1i |
|- ( ph -> V = ( Base ` M ) ) |
| 12 |
1 11 7 10
|
imasbas |
|- ( ph -> B = ( Base ` N ) ) |
| 13 |
|
eqidd |
|- ( ph -> ( +g ` N ) = ( +g ` N ) ) |
| 14 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
| 15 |
1 11 7 10 14
|
imassca |
|- ( ph -> ( Scalar ` M ) = ( Scalar ` N ) ) |
| 16 |
|
eqidd |
|- ( ph -> ( .s ` N ) = ( .s ` N ) ) |
| 17 |
3
|
a1i |
|- ( ph -> S = ( Base ` ( Scalar ` M ) ) ) |
| 18 |
|
eqidd |
|- ( ph -> ( +g ` ( Scalar ` M ) ) = ( +g ` ( Scalar ` M ) ) ) |
| 19 |
|
eqidd |
|- ( ph -> ( .r ` ( Scalar ` M ) ) = ( .r ` ( Scalar ` M ) ) ) |
| 20 |
|
eqidd |
|- ( ph -> ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) ) |
| 21 |
14
|
lmodring |
|- ( M e. LMod -> ( Scalar ` M ) e. Ring ) |
| 22 |
10 21
|
syl |
|- ( ph -> ( Scalar ` M ) e. Ring ) |
| 23 |
4
|
a1i |
|- ( ph -> .+ = ( +g ` M ) ) |
| 24 |
|
lmodgrp |
|- ( M e. LMod -> M e. Grp ) |
| 25 |
10 24
|
syl |
|- ( ph -> M e. Grp ) |
| 26 |
1 11 23 7 8 25 6
|
imasgrp |
|- ( ph -> ( N e. Grp /\ ( F ` .0. ) = ( 0g ` N ) ) ) |
| 27 |
26
|
simpld |
|- ( ph -> N e. Grp ) |
| 28 |
|
eqid |
|- ( .s ` N ) = ( .s ` N ) |
| 29 |
10
|
adantr |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> M e. LMod ) |
| 30 |
|
simprl |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> k e. S ) |
| 31 |
|
simprr |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> b e. V ) |
| 32 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ k e. S /\ b e. V ) -> ( k .x. b ) e. V ) |
| 33 |
29 30 31 32
|
syl3anc |
|- ( ( ph /\ ( k e. S /\ b e. V ) ) -> ( k .x. b ) e. V ) |
| 34 |
1 11 7 10 14 3 5 28 9 33
|
imasvscaf |
|- ( ph -> ( .s ` N ) : ( S X. B ) --> B ) |
| 35 |
34
|
fovcld |
|- ( ( ph /\ u e. S /\ v e. B ) -> ( u ( .s ` N ) v ) e. B ) |
| 36 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ph ) |
| 37 |
|
simpllr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u e. S /\ v e. B /\ w e. B ) ) |
| 38 |
37
|
simp1d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> u e. S ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> u e. S ) |
| 40 |
36 25
|
syl |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> M e. Grp ) |
| 41 |
|
simplr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> y e. V ) |
| 42 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> z e. V ) |
| 43 |
2 4
|
grpcl |
|- ( ( M e. Grp /\ y e. V /\ z e. V ) -> ( y .+ z ) e. V ) |
| 44 |
40 41 42 43
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( y .+ z ) e. V ) |
| 45 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ ( y .+ z ) e. V ) -> ( u ( .s ` N ) ( F ` ( y .+ z ) ) ) = ( F ` ( u .x. ( y .+ z ) ) ) ) |
| 46 |
36 39 44 45
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` ( y .+ z ) ) ) = ( F ` ( u .x. ( y .+ z ) ) ) ) |
| 47 |
|
eqid |
|- ( +g ` N ) = ( +g ` N ) |
| 48 |
7 8 1 11 10 4 47
|
imasaddval |
|- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` N ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 49 |
36 41 42 48
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` y ) ( +g ` N ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 50 |
|
simpr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` y ) = v ) |
| 51 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` z ) = w ) |
| 52 |
50 51
|
oveq12d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` y ) ( +g ` N ) ( F ` z ) ) = ( v ( +g ` N ) w ) ) |
| 53 |
49 52
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( y .+ z ) ) = ( v ( +g ` N ) w ) ) |
| 54 |
53
|
oveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` ( y .+ z ) ) ) = ( u ( .s ` N ) ( v ( +g ` N ) w ) ) ) |
| 55 |
36 10
|
syl |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> M e. LMod ) |
| 56 |
2 4 14 5 3
|
lmodvsdi |
|- ( ( M e. LMod /\ ( u e. S /\ y e. V /\ z e. V ) ) -> ( u .x. ( y .+ z ) ) = ( ( u .x. y ) .+ ( u .x. z ) ) ) |
| 57 |
55 39 41 42 56
|
syl13anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u .x. ( y .+ z ) ) = ( ( u .x. y ) .+ ( u .x. z ) ) ) |
| 58 |
57
|
fveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( u .x. ( y .+ z ) ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
| 59 |
46 54 58
|
3eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
| 60 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ u e. S /\ y e. V ) -> ( u .x. y ) e. V ) |
| 61 |
55 39 41 60
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u .x. y ) e. V ) |
| 62 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ u e. S /\ z e. V ) -> ( u .x. z ) e. V ) |
| 63 |
55 39 42 62
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u .x. z ) e. V ) |
| 64 |
7 8 1 11 10 4 47
|
imasaddval |
|- ( ( ph /\ ( u .x. y ) e. V /\ ( u .x. z ) e. V ) -> ( ( F ` ( u .x. y ) ) ( +g ` N ) ( F ` ( u .x. z ) ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
| 65 |
36 61 63 64
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` ( u .x. y ) ) ( +g ` N ) ( F ` ( u .x. z ) ) ) = ( F ` ( ( u .x. y ) .+ ( u .x. z ) ) ) ) |
| 66 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ y e. V ) -> ( u ( .s ` N ) ( F ` y ) ) = ( F ` ( u .x. y ) ) ) |
| 67 |
36 39 41 66
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` y ) ) = ( F ` ( u .x. y ) ) ) |
| 68 |
50
|
oveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` y ) ) = ( u ( .s ` N ) v ) ) |
| 69 |
67 68
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( u .x. y ) ) = ( u ( .s ` N ) v ) ) |
| 70 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ z e. V ) -> ( u ( .s ` N ) ( F ` z ) ) = ( F ` ( u .x. z ) ) ) |
| 71 |
36 39 42 70
|
syl3anc |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` z ) ) = ( F ` ( u .x. z ) ) ) |
| 72 |
51
|
oveq2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( F ` z ) ) = ( u ( .s ` N ) w ) ) |
| 73 |
71 72
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( F ` ( u .x. z ) ) = ( u ( .s ` N ) w ) ) |
| 74 |
69 73
|
oveq12d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( ( F ` ( u .x. y ) ) ( +g ` N ) ( F ` ( u .x. z ) ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
| 75 |
59 65 74
|
3eqtr2d |
|- ( ( ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) /\ y e. V ) /\ ( F ` y ) = v ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
| 76 |
|
simplll |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ph ) |
| 77 |
37
|
simp2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> v e. B ) |
| 78 |
|
fofn |
|- ( F : V -onto-> B -> F Fn V ) |
| 79 |
7 78
|
syl |
|- ( ph -> F Fn V ) |
| 80 |
|
simpr |
|- ( ( ph /\ v e. B ) -> v e. B ) |
| 81 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
| 82 |
7 81
|
syl |
|- ( ph -> ran F = B ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ v e. B ) -> ran F = B ) |
| 84 |
80 83
|
eleqtrrd |
|- ( ( ph /\ v e. B ) -> v e. ran F ) |
| 85 |
|
fvelrnb |
|- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
| 86 |
85
|
biimpa |
|- ( ( F Fn V /\ v e. ran F ) -> E. y e. V ( F ` y ) = v ) |
| 87 |
79 84 86
|
syl2an2r |
|- ( ( ph /\ v e. B ) -> E. y e. V ( F ` y ) = v ) |
| 88 |
76 77 87
|
syl2anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> E. y e. V ( F ` y ) = v ) |
| 89 |
75 88
|
r19.29a |
|- ( ( ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
| 90 |
|
simpr |
|- ( ( ph /\ w e. B ) -> w e. B ) |
| 91 |
82
|
adantr |
|- ( ( ph /\ w e. B ) -> ran F = B ) |
| 92 |
90 91
|
eleqtrrd |
|- ( ( ph /\ w e. B ) -> w e. ran F ) |
| 93 |
|
fvelrnb |
|- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
| 94 |
93
|
biimpa |
|- ( ( F Fn V /\ w e. ran F ) -> E. z e. V ( F ` z ) = w ) |
| 95 |
79 92 94
|
syl2an2r |
|- ( ( ph /\ w e. B ) -> E. z e. V ( F ` z ) = w ) |
| 96 |
95
|
3ad2antr3 |
|- ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) -> E. z e. V ( F ` z ) = w ) |
| 97 |
89 96
|
r19.29a |
|- ( ( ph /\ ( u e. S /\ v e. B /\ w e. B ) ) -> ( u ( .s ` N ) ( v ( +g ` N ) w ) ) = ( ( u ( .s ` N ) v ) ( +g ` N ) ( u ( .s ` N ) w ) ) ) |
| 98 |
|
simplll |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ph ) |
| 99 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> M e. LMod ) |
| 100 |
|
simpllr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u e. S /\ v e. S /\ w e. B ) ) |
| 101 |
100
|
simp1d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> u e. S ) |
| 102 |
100
|
simp2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> v e. S ) |
| 103 |
|
eqid |
|- ( +g ` ( Scalar ` M ) ) = ( +g ` ( Scalar ` M ) ) |
| 104 |
14 3 103
|
lmodacl |
|- ( ( M e. LMod /\ u e. S /\ v e. S ) -> ( u ( +g ` ( Scalar ` M ) ) v ) e. S ) |
| 105 |
99 101 102 104
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( +g ` ( Scalar ` M ) ) v ) e. S ) |
| 106 |
|
simplr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> z e. V ) |
| 107 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ ( u ( +g ` ( Scalar ` M ) ) v ) e. S /\ z e. V ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
| 108 |
98 105 106 107
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
| 109 |
|
simpr |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
| 110 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) ) |
| 111 |
2 4 14 5 3 103
|
lmodvsdir |
|- ( ( M e. LMod /\ ( u e. S /\ v e. S /\ z e. V ) ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) = ( ( u .x. z ) .+ ( v .x. z ) ) ) |
| 112 |
99 101 102 106 111
|
syl13anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) = ( ( u .x. z ) .+ ( v .x. z ) ) ) |
| 113 |
112
|
fveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) = ( F ` ( ( u .x. z ) .+ ( v .x. z ) ) ) ) |
| 114 |
99 101 106 62
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u .x. z ) e. V ) |
| 115 |
2 14 5 3
|
lmodvscl |
|- ( ( M e. LMod /\ v e. S /\ z e. V ) -> ( v .x. z ) e. V ) |
| 116 |
99 102 106 115
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( v .x. z ) e. V ) |
| 117 |
7 8 1 11 10 4 47
|
imasaddval |
|- ( ( ph /\ ( u .x. z ) e. V /\ ( v .x. z ) e. V ) -> ( ( F ` ( u .x. z ) ) ( +g ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( ( u .x. z ) .+ ( v .x. z ) ) ) ) |
| 118 |
98 114 116 117
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( F ` ( u .x. z ) ) ( +g ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( ( u .x. z ) .+ ( v .x. z ) ) ) ) |
| 119 |
98 101 106 70
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( F ` z ) ) = ( F ` ( u .x. z ) ) ) |
| 120 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( F ` z ) ) = ( u ( .s ` N ) w ) ) |
| 121 |
119 120
|
eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( u .x. z ) ) = ( u ( .s ` N ) w ) ) |
| 122 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ v e. S /\ z e. V ) -> ( v ( .s ` N ) ( F ` z ) ) = ( F ` ( v .x. z ) ) ) |
| 123 |
98 102 106 122
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( v ( .s ` N ) ( F ` z ) ) = ( F ` ( v .x. z ) ) ) |
| 124 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( v ( .s ` N ) ( F ` z ) ) = ( v ( .s ` N ) w ) ) |
| 125 |
123 124
|
eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( v .x. z ) ) = ( v ( .s ` N ) w ) ) |
| 126 |
121 125
|
oveq12d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( F ` ( u .x. z ) ) ( +g ` N ) ( F ` ( v .x. z ) ) ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
| 127 |
113 118 126
|
3eqtr2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( +g ` ( Scalar ` M ) ) v ) .x. z ) ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
| 128 |
108 110 127
|
3eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
| 129 |
95
|
3ad2antr3 |
|- ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) -> E. z e. V ( F ` z ) = w ) |
| 130 |
128 129
|
r19.29a |
|- ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) -> ( ( u ( +g ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( ( u ( .s ` N ) w ) ( +g ` N ) ( v ( .s ` N ) w ) ) ) |
| 131 |
|
eqid |
|- ( .r ` ( Scalar ` M ) ) = ( .r ` ( Scalar ` M ) ) |
| 132 |
14 3 131
|
lmodmcl |
|- ( ( M e. LMod /\ u e. S /\ v e. S ) -> ( u ( .r ` ( Scalar ` M ) ) v ) e. S ) |
| 133 |
99 101 102 132
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .r ` ( Scalar ` M ) ) v ) e. S ) |
| 134 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ ( u ( .r ` ( Scalar ` M ) ) v ) e. S /\ z e. V ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
| 135 |
98 133 106 134
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) ) |
| 136 |
109
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) ( F ` z ) ) = ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) ) |
| 137 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ u e. S /\ ( v .x. z ) e. V ) -> ( u ( .s ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( u .x. ( v .x. z ) ) ) ) |
| 138 |
98 101 116 137
|
syl3anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( F ` ( v .x. z ) ) ) = ( F ` ( u .x. ( v .x. z ) ) ) ) |
| 139 |
123
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) = ( u ( .s ` N ) ( F ` ( v .x. z ) ) ) ) |
| 140 |
2 14 5 3 131
|
lmodvsass |
|- ( ( M e. LMod /\ ( u e. S /\ v e. S /\ z e. V ) ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) = ( u .x. ( v .x. z ) ) ) |
| 141 |
99 101 102 106 140
|
syl13anc |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) = ( u .x. ( v .x. z ) ) ) |
| 142 |
141
|
fveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) = ( F ` ( u .x. ( v .x. z ) ) ) ) |
| 143 |
138 139 142
|
3eqtr4rd |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( F ` ( ( u ( .r ` ( Scalar ` M ) ) v ) .x. z ) ) = ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) ) |
| 144 |
135 136 143
|
3eqtr3d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) ) |
| 145 |
124
|
oveq2d |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( u ( .s ` N ) ( v ( .s ` N ) ( F ` z ) ) ) = ( u ( .s ` N ) ( v ( .s ` N ) w ) ) ) |
| 146 |
144 145
|
eqtrd |
|- ( ( ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) /\ z e. V ) /\ ( F ` z ) = w ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( u ( .s ` N ) ( v ( .s ` N ) w ) ) ) |
| 147 |
146 129
|
r19.29a |
|- ( ( ph /\ ( u e. S /\ v e. S /\ w e. B ) ) -> ( ( u ( .r ` ( Scalar ` M ) ) v ) ( .s ` N ) w ) = ( u ( .s ` N ) ( v ( .s ` N ) w ) ) ) |
| 148 |
|
simplll |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ph ) |
| 149 |
|
eqid |
|- ( 1r ` ( Scalar ` M ) ) = ( 1r ` ( Scalar ` M ) ) |
| 150 |
3 149
|
ringidcl |
|- ( ( Scalar ` M ) e. Ring -> ( 1r ` ( Scalar ` M ) ) e. S ) |
| 151 |
22 150
|
syl |
|- ( ph -> ( 1r ` ( Scalar ` M ) ) e. S ) |
| 152 |
151
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( 1r ` ( Scalar ` M ) ) e. S ) |
| 153 |
|
simplr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> x e. V ) |
| 154 |
1 11 7 10 14 3 5 28 9
|
imasvscaval |
|- ( ( ph /\ ( 1r ` ( Scalar ` M ) ) e. S /\ x e. V ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) ( F ` x ) ) = ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) ) |
| 155 |
148 152 153 154
|
syl3anc |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) ( F ` x ) ) = ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) ) |
| 156 |
|
simpr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( F ` x ) = u ) |
| 157 |
156
|
oveq2d |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) ( F ` x ) ) = ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) u ) ) |
| 158 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> M e. LMod ) |
| 159 |
2 14 5 149
|
lmodvs1 |
|- ( ( M e. LMod /\ x e. V ) -> ( ( 1r ` ( Scalar ` M ) ) .x. x ) = x ) |
| 160 |
158 153 159
|
syl2anc |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) .x. x ) = x ) |
| 161 |
160
|
fveq2d |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) = ( F ` x ) ) |
| 162 |
161 156
|
eqtrd |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( F ` ( ( 1r ` ( Scalar ` M ) ) .x. x ) ) = u ) |
| 163 |
155 157 162
|
3eqtr3d |
|- ( ( ( ( ph /\ u e. B ) /\ x e. V ) /\ ( F ` x ) = u ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) u ) = u ) |
| 164 |
|
simpr |
|- ( ( ph /\ u e. B ) -> u e. B ) |
| 165 |
82
|
adantr |
|- ( ( ph /\ u e. B ) -> ran F = B ) |
| 166 |
164 165
|
eleqtrrd |
|- ( ( ph /\ u e. B ) -> u e. ran F ) |
| 167 |
|
fvelrnb |
|- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
| 168 |
167
|
biimpa |
|- ( ( F Fn V /\ u e. ran F ) -> E. x e. V ( F ` x ) = u ) |
| 169 |
79 166 168
|
syl2an2r |
|- ( ( ph /\ u e. B ) -> E. x e. V ( F ` x ) = u ) |
| 170 |
163 169
|
r19.29a |
|- ( ( ph /\ u e. B ) -> ( ( 1r ` ( Scalar ` M ) ) ( .s ` N ) u ) = u ) |
| 171 |
12 13 15 16 17 18 19 20 22 27 35 97 130 147 170
|
islmodd |
|- ( ph -> N e. LMod ) |