| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasgrp.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imasgrp.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imasgrp.p |
|- ( ph -> .+ = ( +g ` R ) ) |
| 4 |
|
imasgrp.f |
|- ( ph -> F : V -onto-> B ) |
| 5 |
|
imasgrp.e |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
| 6 |
|
imasgrp.r |
|- ( ph -> R e. Grp ) |
| 7 |
|
imasgrp.z |
|- .0. = ( 0g ` R ) |
| 8 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. V /\ y e. V ) -> R e. Grp ) |
| 9 |
|
simp2 |
|- ( ( ph /\ x e. V /\ y e. V ) -> x e. V ) |
| 10 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. V /\ y e. V ) -> V = ( Base ` R ) ) |
| 11 |
9 10
|
eleqtrd |
|- ( ( ph /\ x e. V /\ y e. V ) -> x e. ( Base ` R ) ) |
| 12 |
|
simp3 |
|- ( ( ph /\ x e. V /\ y e. V ) -> y e. V ) |
| 13 |
12 10
|
eleqtrd |
|- ( ( ph /\ x e. V /\ y e. V ) -> y e. ( Base ` R ) ) |
| 14 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 15 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 16 |
14 15
|
grpcl |
|- ( ( R e. Grp /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 17 |
8 11 13 16
|
syl3anc |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( x ( +g ` R ) y ) e. ( Base ` R ) ) |
| 18 |
3
|
3ad2ant1 |
|- ( ( ph /\ x e. V /\ y e. V ) -> .+ = ( +g ` R ) ) |
| 19 |
18
|
oveqd |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 20 |
17 19 10
|
3eltr4d |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
| 21 |
6
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> R e. Grp ) |
| 22 |
11
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. ( Base ` R ) ) |
| 23 |
13
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> y e. ( Base ` R ) ) |
| 24 |
|
simpr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
| 25 |
2
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V = ( Base ` R ) ) |
| 26 |
24 25
|
eleqtrd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. ( Base ` R ) ) |
| 27 |
14 15
|
grpass |
|- ( ( R e. Grp /\ ( x e. ( Base ` R ) /\ y e. ( Base ` R ) /\ z e. ( Base ` R ) ) ) -> ( ( x ( +g ` R ) y ) ( +g ` R ) z ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) |
| 28 |
21 22 23 26 27
|
syl13anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x ( +g ` R ) y ) ( +g ` R ) z ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) |
| 29 |
3
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> .+ = ( +g ` R ) ) |
| 30 |
19
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 31 |
|
eqidd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z = z ) |
| 32 |
29 30 31
|
oveq123d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( ( x ( +g ` R ) y ) ( +g ` R ) z ) ) |
| 33 |
|
eqidd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x = x ) |
| 34 |
29
|
oveqd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) = ( y ( +g ` R ) z ) ) |
| 35 |
29 33 34
|
oveq123d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ ( y .+ z ) ) = ( x ( +g ` R ) ( y ( +g ` R ) z ) ) ) |
| 36 |
28 32 35
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 37 |
36
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
| 38 |
14 7
|
grpidcl |
|- ( R e. Grp -> .0. e. ( Base ` R ) ) |
| 39 |
6 38
|
syl |
|- ( ph -> .0. e. ( Base ` R ) ) |
| 40 |
39 2
|
eleqtrrd |
|- ( ph -> .0. e. V ) |
| 41 |
3
|
adantr |
|- ( ( ph /\ x e. V ) -> .+ = ( +g ` R ) ) |
| 42 |
41
|
oveqd |
|- ( ( ph /\ x e. V ) -> ( .0. .+ x ) = ( .0. ( +g ` R ) x ) ) |
| 43 |
2
|
eleq2d |
|- ( ph -> ( x e. V <-> x e. ( Base ` R ) ) ) |
| 44 |
43
|
biimpa |
|- ( ( ph /\ x e. V ) -> x e. ( Base ` R ) ) |
| 45 |
14 15 7
|
grplid |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( .0. ( +g ` R ) x ) = x ) |
| 46 |
6 44 45
|
syl2an2r |
|- ( ( ph /\ x e. V ) -> ( .0. ( +g ` R ) x ) = x ) |
| 47 |
42 46
|
eqtrd |
|- ( ( ph /\ x e. V ) -> ( .0. .+ x ) = x ) |
| 48 |
47
|
fveq2d |
|- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
| 49 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 50 |
14 49
|
grpinvcl |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) |
| 51 |
6 44 50
|
syl2an2r |
|- ( ( ph /\ x e. V ) -> ( ( invg ` R ) ` x ) e. ( Base ` R ) ) |
| 52 |
2
|
adantr |
|- ( ( ph /\ x e. V ) -> V = ( Base ` R ) ) |
| 53 |
51 52
|
eleqtrrd |
|- ( ( ph /\ x e. V ) -> ( ( invg ` R ) ` x ) e. V ) |
| 54 |
41
|
oveqd |
|- ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) .+ x ) = ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) ) |
| 55 |
14 15 7 49
|
grplinv |
|- ( ( R e. Grp /\ x e. ( Base ` R ) ) -> ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) = .0. ) |
| 56 |
6 44 55
|
syl2an2r |
|- ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) ( +g ` R ) x ) = .0. ) |
| 57 |
54 56
|
eqtrd |
|- ( ( ph /\ x e. V ) -> ( ( ( invg ` R ) ` x ) .+ x ) = .0. ) |
| 58 |
57
|
fveq2d |
|- ( ( ph /\ x e. V ) -> ( F ` ( ( ( invg ` R ) ` x ) .+ x ) ) = ( F ` .0. ) ) |
| 59 |
1 2 3 4 5 6 20 37 40 48 53 58
|
imasgrp2 |
|- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |