| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasgrp.u |
|- ( ph -> U = ( F "s R ) ) |
| 2 |
|
imasgrp.v |
|- ( ph -> V = ( Base ` R ) ) |
| 3 |
|
imasgrp.p |
|- ( ph -> .+ = ( +g ` R ) ) |
| 4 |
|
imasgrp.f |
|- ( ph -> F : V -onto-> B ) |
| 5 |
|
imasgrp.e |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) ) ) |
| 6 |
|
imasgrp2.r |
|- ( ph -> R e. W ) |
| 7 |
|
imasgrp2.1 |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
| 8 |
|
imasgrp2.2 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( x .+ ( y .+ z ) ) ) ) |
| 9 |
|
imasgrp2.3 |
|- ( ph -> .0. e. V ) |
| 10 |
|
imasgrp2.4 |
|- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` x ) ) |
| 11 |
|
imasgrp2.5 |
|- ( ( ph /\ x e. V ) -> N e. V ) |
| 12 |
|
imasgrp2.6 |
|- ( ( ph /\ x e. V ) -> ( F ` ( N .+ x ) ) = ( F ` .0. ) ) |
| 13 |
1 2 4 6
|
imasbas |
|- ( ph -> B = ( Base ` U ) ) |
| 14 |
|
eqidd |
|- ( ph -> ( +g ` U ) = ( +g ` U ) ) |
| 15 |
3
|
oveqd |
|- ( ph -> ( a .+ b ) = ( a ( +g ` R ) b ) ) |
| 16 |
15
|
fveq2d |
|- ( ph -> ( F ` ( a .+ b ) ) = ( F ` ( a ( +g ` R ) b ) ) ) |
| 17 |
3
|
oveqd |
|- ( ph -> ( p .+ q ) = ( p ( +g ` R ) q ) ) |
| 18 |
17
|
fveq2d |
|- ( ph -> ( F ` ( p .+ q ) ) = ( F ` ( p ( +g ` R ) q ) ) ) |
| 19 |
16 18
|
eqeq12d |
|- ( ph -> ( ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) <-> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 20 |
19
|
3ad2ant1 |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( F ` ( a .+ b ) ) = ( F ` ( p .+ q ) ) <-> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 21 |
5 20
|
sylibd |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
| 22 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 23 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 24 |
17
|
adantr |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) = ( p ( +g ` R ) q ) ) |
| 25 |
7
|
3expb |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
| 26 |
25
|
caovclg |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) |
| 27 |
24 26
|
eqeltrrd |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p ( +g ` R ) q ) e. V ) |
| 28 |
4 21 1 2 6 22 23 27
|
imasaddf |
|- ( ph -> ( +g ` U ) : ( B X. B ) --> B ) |
| 29 |
|
fovcdm |
|- ( ( ( +g ` U ) : ( B X. B ) --> B /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) |
| 30 |
28 29
|
syl3an1 |
|- ( ( ph /\ u e. B /\ v e. B ) -> ( u ( +g ` U ) v ) e. B ) |
| 31 |
|
forn |
|- ( F : V -onto-> B -> ran F = B ) |
| 32 |
4 31
|
syl |
|- ( ph -> ran F = B ) |
| 33 |
32
|
eleq2d |
|- ( ph -> ( u e. ran F <-> u e. B ) ) |
| 34 |
32
|
eleq2d |
|- ( ph -> ( v e. ran F <-> v e. B ) ) |
| 35 |
32
|
eleq2d |
|- ( ph -> ( w e. ran F <-> w e. B ) ) |
| 36 |
33 34 35
|
3anbi123d |
|- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( u e. B /\ v e. B /\ w e. B ) ) ) |
| 37 |
|
fofn |
|- ( F : V -onto-> B -> F Fn V ) |
| 38 |
4 37
|
syl |
|- ( ph -> F Fn V ) |
| 39 |
|
fvelrnb |
|- ( F Fn V -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
| 40 |
|
fvelrnb |
|- ( F Fn V -> ( v e. ran F <-> E. y e. V ( F ` y ) = v ) ) |
| 41 |
|
fvelrnb |
|- ( F Fn V -> ( w e. ran F <-> E. z e. V ( F ` z ) = w ) ) |
| 42 |
39 40 41
|
3anbi123d |
|- ( F Fn V -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 43 |
38 42
|
syl |
|- ( ph -> ( ( u e. ran F /\ v e. ran F /\ w e. ran F ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 44 |
36 43
|
bitr3d |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) ) |
| 45 |
|
3reeanv |
|- ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) <-> ( E. x e. V ( F ` x ) = u /\ E. y e. V ( F ` y ) = v /\ E. z e. V ( F ` z ) = w ) ) |
| 46 |
44 45
|
bitr4di |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) <-> E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) ) ) |
| 47 |
3
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> .+ = ( +g ` R ) ) |
| 48 |
47
|
oveqd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) = ( ( x .+ y ) ( +g ` R ) z ) ) |
| 49 |
48
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) .+ z ) ) = ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) ) |
| 50 |
47
|
oveqd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ ( y .+ z ) ) = ( x ( +g ` R ) ( y .+ z ) ) ) |
| 51 |
50
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .+ ( y .+ z ) ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 52 |
8 49 51
|
3eqtr3d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 53 |
|
simpl |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ph ) |
| 54 |
7
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) e. V ) |
| 55 |
|
simpr3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> z e. V ) |
| 56 |
4 21 1 2 6 22 23
|
imasaddval |
|- ( ( ph /\ ( x .+ y ) e. V /\ z e. V ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) ) |
| 57 |
53 54 55 56
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( F ` ( ( x .+ y ) ( +g ` R ) z ) ) ) |
| 58 |
|
simpr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> x e. V ) |
| 59 |
26
|
caovclg |
|- ( ( ph /\ ( y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 60 |
59
|
3adantr1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) e. V ) |
| 61 |
4 21 1 2 6 22 23
|
imasaddval |
|- ( ( ph /\ x e. V /\ ( y .+ z ) e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 62 |
53 58 60 61
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) = ( F ` ( x ( +g ` R ) ( y .+ z ) ) ) ) |
| 63 |
52 57 62
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) |
| 64 |
4 21 1 2 6 22 23
|
imasaddval |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 65 |
64
|
3adant3r3 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 66 |
47
|
oveqd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( x .+ y ) = ( x ( +g ` R ) y ) ) |
| 67 |
66
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( x .+ y ) ) = ( F ` ( x ( +g ` R ) y ) ) ) |
| 68 |
65 67
|
eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( F ` ( x .+ y ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` ( x .+ y ) ) ( +g ` U ) ( F ` z ) ) ) |
| 70 |
4 21 1 2 6 22 23
|
imasaddval |
|- ( ( ph /\ y e. V /\ z e. V ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y ( +g ` R ) z ) ) ) |
| 71 |
70
|
3adant3r1 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y ( +g ` R ) z ) ) ) |
| 72 |
47
|
oveqd |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( y .+ z ) = ( y ( +g ` R ) z ) ) |
| 73 |
72
|
fveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( F ` ( y .+ z ) ) = ( F ` ( y ( +g ` R ) z ) ) ) |
| 74 |
71 73
|
eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( F ` ( y .+ z ) ) ) |
| 75 |
74
|
oveq2d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( ( F ` x ) ( +g ` U ) ( F ` ( y .+ z ) ) ) ) |
| 76 |
63 69 75
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) ) |
| 77 |
|
simp1 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` x ) = u ) |
| 78 |
|
simp2 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` y ) = v ) |
| 79 |
77 78
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( F ` y ) ) = ( u ( +g ` U ) v ) ) |
| 80 |
|
simp3 |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( F ` z ) = w ) |
| 81 |
79 80
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( u ( +g ` U ) v ) ( +g ` U ) w ) ) |
| 82 |
78 80
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` y ) ( +g ` U ) ( F ` z ) ) = ( v ( +g ` U ) w ) ) |
| 83 |
77 82
|
oveq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) |
| 84 |
81 83
|
eqeq12d |
|- ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ( +g ` U ) ( F ` z ) ) = ( ( F ` x ) ( +g ` U ) ( ( F ` y ) ( +g ` U ) ( F ` z ) ) ) <-> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 85 |
76 84
|
syl5ibcom |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 86 |
85
|
3exp2 |
|- ( ph -> ( x e. V -> ( y e. V -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) ) ) |
| 87 |
86
|
imp32 |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( z e. V -> ( ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) ) |
| 88 |
87
|
rexlimdv |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 89 |
88
|
rexlimdvva |
|- ( ph -> ( E. x e. V E. y e. V E. z e. V ( ( F ` x ) = u /\ ( F ` y ) = v /\ ( F ` z ) = w ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 90 |
46 89
|
sylbid |
|- ( ph -> ( ( u e. B /\ v e. B /\ w e. B ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) ) |
| 91 |
90
|
imp |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u ( +g ` U ) v ) ( +g ` U ) w ) = ( u ( +g ` U ) ( v ( +g ` U ) w ) ) ) |
| 92 |
|
fof |
|- ( F : V -onto-> B -> F : V --> B ) |
| 93 |
4 92
|
syl |
|- ( ph -> F : V --> B ) |
| 94 |
93 9
|
ffvelcdmd |
|- ( ph -> ( F ` .0. ) e. B ) |
| 95 |
38 39
|
syl |
|- ( ph -> ( u e. ran F <-> E. x e. V ( F ` x ) = u ) ) |
| 96 |
33 95
|
bitr3d |
|- ( ph -> ( u e. B <-> E. x e. V ( F ` x ) = u ) ) |
| 97 |
|
simpl |
|- ( ( ph /\ x e. V ) -> ph ) |
| 98 |
9
|
adantr |
|- ( ( ph /\ x e. V ) -> .0. e. V ) |
| 99 |
|
simpr |
|- ( ( ph /\ x e. V ) -> x e. V ) |
| 100 |
4 21 1 2 6 22 23
|
imasaddval |
|- ( ( ph /\ .0. e. V /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. ( +g ` R ) x ) ) ) |
| 101 |
97 98 99 100
|
syl3anc |
|- ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` ( .0. ( +g ` R ) x ) ) ) |
| 102 |
3
|
adantr |
|- ( ( ph /\ x e. V ) -> .+ = ( +g ` R ) ) |
| 103 |
102
|
oveqd |
|- ( ( ph /\ x e. V ) -> ( .0. .+ x ) = ( .0. ( +g ` R ) x ) ) |
| 104 |
103
|
fveq2d |
|- ( ( ph /\ x e. V ) -> ( F ` ( .0. .+ x ) ) = ( F ` ( .0. ( +g ` R ) x ) ) ) |
| 105 |
101 104 10
|
3eqtr2d |
|- ( ( ph /\ x e. V ) -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) ) |
| 106 |
|
oveq2 |
|- ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( ( F ` .0. ) ( +g ` U ) u ) ) |
| 107 |
|
id |
|- ( ( F ` x ) = u -> ( F ` x ) = u ) |
| 108 |
106 107
|
eqeq12d |
|- ( ( F ` x ) = u -> ( ( ( F ` .0. ) ( +g ` U ) ( F ` x ) ) = ( F ` x ) <-> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 109 |
105 108
|
syl5ibcom |
|- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 110 |
109
|
rexlimdva |
|- ( ph -> ( E. x e. V ( F ` x ) = u -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 111 |
96 110
|
sylbid |
|- ( ph -> ( u e. B -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) ) |
| 112 |
111
|
imp |
|- ( ( ph /\ u e. B ) -> ( ( F ` .0. ) ( +g ` U ) u ) = u ) |
| 113 |
93
|
adantr |
|- ( ( ph /\ x e. V ) -> F : V --> B ) |
| 114 |
113 11
|
ffvelcdmd |
|- ( ( ph /\ x e. V ) -> ( F ` N ) e. B ) |
| 115 |
4 21 1 2 6 22 23
|
imasaddval |
|- ( ( ph /\ N e. V /\ x e. V ) -> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` ( N ( +g ` R ) x ) ) ) |
| 116 |
97 11 99 115
|
syl3anc |
|- ( ( ph /\ x e. V ) -> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` ( N ( +g ` R ) x ) ) ) |
| 117 |
102
|
oveqd |
|- ( ( ph /\ x e. V ) -> ( N .+ x ) = ( N ( +g ` R ) x ) ) |
| 118 |
117
|
fveq2d |
|- ( ( ph /\ x e. V ) -> ( F ` ( N .+ x ) ) = ( F ` ( N ( +g ` R ) x ) ) ) |
| 119 |
116 118 12
|
3eqtr2d |
|- ( ( ph /\ x e. V ) -> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) |
| 120 |
|
oveq1 |
|- ( v = ( F ` N ) -> ( v ( +g ` U ) ( F ` x ) ) = ( ( F ` N ) ( +g ` U ) ( F ` x ) ) ) |
| 121 |
120
|
eqeq1d |
|- ( v = ( F ` N ) -> ( ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) <-> ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) ) |
| 122 |
121
|
rspcev |
|- ( ( ( F ` N ) e. B /\ ( ( F ` N ) ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) -> E. v e. B ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) |
| 123 |
114 119 122
|
syl2anc |
|- ( ( ph /\ x e. V ) -> E. v e. B ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) ) |
| 124 |
|
oveq2 |
|- ( ( F ` x ) = u -> ( v ( +g ` U ) ( F ` x ) ) = ( v ( +g ` U ) u ) ) |
| 125 |
124
|
eqeq1d |
|- ( ( F ` x ) = u -> ( ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) <-> ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 126 |
125
|
rexbidv |
|- ( ( F ` x ) = u -> ( E. v e. B ( v ( +g ` U ) ( F ` x ) ) = ( F ` .0. ) <-> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 127 |
123 126
|
syl5ibcom |
|- ( ( ph /\ x e. V ) -> ( ( F ` x ) = u -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 128 |
127
|
rexlimdva |
|- ( ph -> ( E. x e. V ( F ` x ) = u -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 129 |
96 128
|
sylbid |
|- ( ph -> ( u e. B -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) ) |
| 130 |
129
|
imp |
|- ( ( ph /\ u e. B ) -> E. v e. B ( v ( +g ` U ) u ) = ( F ` .0. ) ) |
| 131 |
13 14 30 91 94 112 130
|
isgrpde |
|- ( ph -> U e. Grp ) |
| 132 |
13 14 94 112 131
|
grpidd2 |
|- ( ph -> ( F ` .0. ) = ( 0g ` U ) ) |
| 133 |
131 132
|
jca |
|- ( ph -> ( U e. Grp /\ ( F ` .0. ) = ( 0g ` U ) ) ) |