Description: If G is a submodule of M , then the "natural map" from elements to their cosets is a left module homomorphism from M to M / G . (Contributed by Thierry Arnoux, 18-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | quslmod.n | |
|
quslmod.v | |
||
quslmod.1 | |
||
quslmod.2 | |
||
quslmhm.f | |
||
Assertion | quslmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslmod.n | |
|
2 | quslmod.v | |
|
3 | quslmod.1 | |
|
4 | quslmod.2 | |
|
5 | quslmhm.f | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 1 2 3 4 | quslmod | |
12 | 1 | a1i | |
13 | 2 | a1i | |
14 | ovexd | |
|
15 | 12 13 14 3 8 | quss | |
16 | 15 | eqcomd | |
17 | eqid | |
|
18 | 17 | lsssubg | |
19 | 3 4 18 | syl2anc | |
20 | lmodabl | |
|
21 | ablnsg | |
|
22 | 3 20 21 | 3syl | |
23 | 19 22 | eleqtrrd | |
24 | 2 1 5 | qusghm | |
25 | 23 24 | syl | |
26 | 12 13 5 14 3 | qusval | |
27 | 12 13 5 14 3 | quslem | |
28 | eqid | |
|
29 | 3 | adantr | |
30 | 4 | adantr | |
31 | simpr1 | |
|
32 | simpr2 | |
|
33 | simpr3 | |
|
34 | 2 28 10 6 29 30 31 1 7 5 32 33 | qusvscpbl | |
35 | 26 13 27 3 8 10 6 7 34 | imasvscaval | |
36 | 35 | 3expb | |
37 | 36 | eqcomd | |
38 | 2 6 7 8 9 10 3 11 16 25 37 | islmhmd | |