Metamath Proof Explorer


Theorem quslmhm

Description: If G is a submodule of M , then the "natural map" from elements to their cosets is a left module homomorphism from M to M / G . (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses quslmod.n N = M / 𝑠 M ~ QG G
quslmod.v V = Base M
quslmod.1 φ M LMod
quslmod.2 φ G LSubSp M
quslmhm.f F = x V x M ~ QG G
Assertion quslmhm φ F M LMHom N

Proof

Step Hyp Ref Expression
1 quslmod.n N = M / 𝑠 M ~ QG G
2 quslmod.v V = Base M
3 quslmod.1 φ M LMod
4 quslmod.2 φ G LSubSp M
5 quslmhm.f F = x V x M ~ QG G
6 eqid M = M
7 eqid N = N
8 eqid Scalar M = Scalar M
9 eqid Scalar N = Scalar N
10 eqid Base Scalar M = Base Scalar M
11 1 2 3 4 quslmod φ N LMod
12 1 a1i φ N = M / 𝑠 M ~ QG G
13 2 a1i φ V = Base M
14 ovexd φ M ~ QG G V
15 12 13 14 3 8 quss φ Scalar M = Scalar N
16 15 eqcomd φ Scalar N = Scalar M
17 eqid LSubSp M = LSubSp M
18 17 lsssubg M LMod G LSubSp M G SubGrp M
19 3 4 18 syl2anc φ G SubGrp M
20 lmodabl M LMod M Abel
21 ablnsg M Abel NrmSGrp M = SubGrp M
22 3 20 21 3syl φ NrmSGrp M = SubGrp M
23 19 22 eleqtrrd φ G NrmSGrp M
24 2 1 5 qusghm G NrmSGrp M F M GrpHom N
25 23 24 syl φ F M GrpHom N
26 12 13 5 14 3 qusval φ N = F 𝑠 M
27 12 13 5 14 3 quslem φ F : V onto V / M ~ QG G
28 eqid M ~ QG G = M ~ QG G
29 3 adantr φ k Base Scalar M u V v V M LMod
30 4 adantr φ k Base Scalar M u V v V G LSubSp M
31 simpr1 φ k Base Scalar M u V v V k Base Scalar M
32 simpr2 φ k Base Scalar M u V v V u V
33 simpr3 φ k Base Scalar M u V v V v V
34 2 28 10 6 29 30 31 1 7 5 32 33 qusvscpbl φ k Base Scalar M u V v V F u = F v F k M u = F k M v
35 26 13 27 3 8 10 6 7 34 imasvscaval φ y Base Scalar M z V y N F z = F y M z
36 35 3expb φ y Base Scalar M z V y N F z = F y M z
37 36 eqcomd φ y Base Scalar M z V F y M z = y N F z
38 2 6 7 8 9 10 3 11 16 25 37 islmhmd φ F M LMHom N