Metamath Proof Explorer


Theorem quslmhm

Description: If G is a submodule of M , then the "natural map" from elements to their cosets is a left module homomorphism from M to M / G . (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses quslmod.n N=M/𝑠M~QGG
quslmod.v V=BaseM
quslmod.1 φMLMod
quslmod.2 φGLSubSpM
quslmhm.f F=xVxM~QGG
Assertion quslmhm φFMLMHomN

Proof

Step Hyp Ref Expression
1 quslmod.n N=M/𝑠M~QGG
2 quslmod.v V=BaseM
3 quslmod.1 φMLMod
4 quslmod.2 φGLSubSpM
5 quslmhm.f F=xVxM~QGG
6 eqid M=M
7 eqid N=N
8 eqid ScalarM=ScalarM
9 eqid ScalarN=ScalarN
10 eqid BaseScalarM=BaseScalarM
11 1 2 3 4 quslmod φNLMod
12 1 a1i φN=M/𝑠M~QGG
13 2 a1i φV=BaseM
14 ovexd φM~QGGV
15 12 13 14 3 8 quss φScalarM=ScalarN
16 15 eqcomd φScalarN=ScalarM
17 eqid LSubSpM=LSubSpM
18 17 lsssubg MLModGLSubSpMGSubGrpM
19 3 4 18 syl2anc φGSubGrpM
20 lmodabl MLModMAbel
21 ablnsg MAbelNrmSGrpM=SubGrpM
22 3 20 21 3syl φNrmSGrpM=SubGrpM
23 19 22 eleqtrrd φGNrmSGrpM
24 2 1 5 qusghm GNrmSGrpMFMGrpHomN
25 23 24 syl φFMGrpHomN
26 12 13 5 14 3 qusval φN=F𝑠M
27 12 13 5 14 3 quslem φF:VontoV/M~QGG
28 eqid M~QGG=M~QGG
29 3 adantr φkBaseScalarMuVvVMLMod
30 4 adantr φkBaseScalarMuVvVGLSubSpM
31 simpr1 φkBaseScalarMuVvVkBaseScalarM
32 simpr2 φkBaseScalarMuVvVuV
33 simpr3 φkBaseScalarMuVvVvV
34 2 28 10 6 29 30 31 1 7 5 32 33 qusvscpbl φkBaseScalarMuVvVFu=FvFkMu=FkMv
35 26 13 27 3 8 10 6 7 34 imasvscaval φyBaseScalarMzVyNFz=FyMz
36 35 3expb φyBaseScalarMzVyNFz=FyMz
37 36 eqcomd φyBaseScalarMzVFyMz=yNFz
38 2 6 7 8 9 10 3 11 16 25 37 islmhmd φFMLMHomN