Step |
Hyp |
Ref |
Expression |
1 |
|
quslmod.n |
|
2 |
|
quslmod.v |
|
3 |
|
quslmod.1 |
|
4 |
|
quslmod.2 |
|
5 |
1
|
a1i |
|
6 |
2
|
a1i |
|
7 |
|
eqid |
|
8 |
|
ovexd |
|
9 |
5 6 7 8 3
|
qusval |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
5 6 7 8 3
|
quslem |
|
15 |
|
eqid |
|
16 |
15
|
lsssubg |
|
17 |
3 4 16
|
syl2anc |
|
18 |
|
eqid |
|
19 |
2 18
|
eqger |
|
20 |
17 19
|
syl |
|
21 |
2
|
fvexi |
|
22 |
21
|
a1i |
|
23 |
|
lmodgrp |
|
24 |
3 23
|
syl |
|
25 |
24
|
adantr |
|
26 |
|
simprl |
|
27 |
|
simprr |
|
28 |
2 11
|
grpcl |
|
29 |
25 26 27 28
|
syl3anc |
|
30 |
|
lmodabl |
|
31 |
|
ablnsg |
|
32 |
3 30 31
|
3syl |
|
33 |
17 32
|
eleqtrrd |
|
34 |
2 18 11
|
eqgcpbl |
|
35 |
33 34
|
syl |
|
36 |
20 22 7 29 35
|
ercpbl |
|
37 |
3
|
adantr |
|
38 |
4
|
adantr |
|
39 |
|
simpr1 |
|
40 |
|
eqid |
|
41 |
|
simpr2 |
|
42 |
|
simpr3 |
|
43 |
2 18 10 12 37 38 39 1 40 7 41 42
|
qusvscpbl |
|
44 |
9 2 10 11 12 13 14 36 43 3
|
imaslmod |
|