| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quslmod.n |
|
| 2 |
|
quslmod.v |
|
| 3 |
|
quslmod.1 |
|
| 4 |
|
quslmod.2 |
|
| 5 |
1
|
a1i |
|
| 6 |
2
|
a1i |
|
| 7 |
|
eqid |
|
| 8 |
|
ovexd |
|
| 9 |
5 6 7 8 3
|
qusval |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
5 6 7 8 3
|
quslem |
|
| 15 |
|
eqid |
|
| 16 |
15
|
lsssubg |
|
| 17 |
3 4 16
|
syl2anc |
|
| 18 |
|
eqid |
|
| 19 |
2 18
|
eqger |
|
| 20 |
17 19
|
syl |
|
| 21 |
2
|
fvexi |
|
| 22 |
21
|
a1i |
|
| 23 |
|
lmodgrp |
|
| 24 |
3 23
|
syl |
|
| 25 |
24
|
adantr |
|
| 26 |
|
simprl |
|
| 27 |
|
simprr |
|
| 28 |
2 11
|
grpcl |
|
| 29 |
25 26 27 28
|
syl3anc |
|
| 30 |
|
lmodabl |
|
| 31 |
|
ablnsg |
|
| 32 |
3 30 31
|
3syl |
|
| 33 |
17 32
|
eleqtrrd |
|
| 34 |
2 18 11
|
eqgcpbl |
|
| 35 |
33 34
|
syl |
|
| 36 |
20 22 7 29 35
|
ercpbl |
|
| 37 |
3
|
adantr |
|
| 38 |
4
|
adantr |
|
| 39 |
|
simpr1 |
|
| 40 |
|
eqid |
|
| 41 |
|
simpr2 |
|
| 42 |
|
simpr3 |
|
| 43 |
2 18 10 12 37 38 39 1 40 7 41 42
|
qusvscpbl |
|
| 44 |
9 2 10 11 12 13 14 36 43 3
|
imaslmod |
|