Metamath Proof Explorer


Theorem ghmker

Description: The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Hypothesis ghmker.1 0 = ( 0g𝑇 )
Assertion ghmker ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 ghmker.1 0 = ( 0g𝑇 )
2 ghmgrp2 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp )
3 1 0nsg ( 𝑇 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝑇 ) )
4 2 3 syl ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → { 0 } ∈ ( NrmSGrp ‘ 𝑇 ) )
5 ghmnsgpreima ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ { 0 } ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝑆 ) )
6 4 5 mpdan ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 “ { 0 } ) ∈ ( NrmSGrp ‘ 𝑆 ) )