Metamath Proof Explorer


Theorem ghmnsgpreima

Description: The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion ghmnsgpreima ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( 𝐹𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 nsgsubg ( 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) → 𝑉 ∈ ( SubGrp ‘ 𝑇 ) )
2 ghmpreima ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( SubGrp ‘ 𝑇 ) ) → ( 𝐹𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) )
3 1 2 sylan2 ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( 𝐹𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) )
4 ghmgrp1 ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp )
5 4 ad2antrr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝑆 ∈ Grp )
6 simprl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑆 ) )
7 simprr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝑦 ∈ ( 𝐹𝑉 ) )
8 simpll ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) )
9 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
10 eqid ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 )
11 9 10 ghmf ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) )
12 8 11 syl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) )
13 12 ffnd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝐹 Fn ( Base ‘ 𝑆 ) )
14 elpreima ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( 𝑦 ∈ ( 𝐹𝑉 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹𝑦 ) ∈ 𝑉 ) ) )
15 13 14 syl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝑦 ∈ ( 𝐹𝑉 ) ↔ ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹𝑦 ) ∈ 𝑉 ) ) )
16 7 15 mpbid ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹𝑦 ) ∈ 𝑉 ) )
17 16 simpld ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑆 ) )
18 eqid ( +g𝑆 ) = ( +g𝑆 )
19 9 18 grpcl ( ( 𝑆 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
20 5 6 17 19 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) )
21 eqid ( -g𝑆 ) = ( -g𝑆 )
22 9 21 grpsubcl ( ( 𝑆 ∈ Grp ∧ ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) )
23 5 20 6 22 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) )
24 eqid ( -g𝑇 ) = ( -g𝑇 )
25 9 21 24 ghmsub ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑥 ( +g𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) ( -g𝑇 ) ( 𝐹𝑥 ) ) )
26 8 20 6 25 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) ( -g𝑇 ) ( 𝐹𝑥 ) ) )
27 eqid ( +g𝑇 ) = ( +g𝑇 )
28 9 18 27 ghmlin ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
29 8 6 17 28 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) = ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) )
30 29 oveq1d ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( +g𝑆 ) 𝑦 ) ) ( -g𝑇 ) ( 𝐹𝑥 ) ) = ( ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ( -g𝑇 ) ( 𝐹𝑥 ) ) )
31 26 30 eqtrd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ) = ( ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ( -g𝑇 ) ( 𝐹𝑥 ) ) )
32 simplr ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) )
33 12 6 ffvelrnd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝐹𝑥 ) ∈ ( Base ‘ 𝑇 ) )
34 16 simprd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝐹𝑦 ) ∈ 𝑉 )
35 10 27 24 nsgconj ( ( 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ∧ ( 𝐹𝑥 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹𝑦 ) ∈ 𝑉 ) → ( ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ( -g𝑇 ) ( 𝐹𝑥 ) ) ∈ 𝑉 )
36 32 33 34 35 syl3anc ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( ( ( 𝐹𝑥 ) ( +g𝑇 ) ( 𝐹𝑦 ) ) ( -g𝑇 ) ( 𝐹𝑥 ) ) ∈ 𝑉 )
37 31 36 eqeltrd ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ) ∈ 𝑉 )
38 elpreima ( 𝐹 Fn ( Base ‘ 𝑆 ) → ( ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( 𝐹𝑉 ) ↔ ( ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ) ∈ 𝑉 ) ) )
39 13 38 syl ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( 𝐹𝑉 ) ↔ ( ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( Base ‘ 𝑆 ) ∧ ( 𝐹 ‘ ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ) ∈ 𝑉 ) ) )
40 23 37 39 mpbir2and ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( 𝐹𝑉 ) ) ) → ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( 𝐹𝑉 ) )
41 40 ralrimivva ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹𝑉 ) ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( 𝐹𝑉 ) )
42 9 18 21 isnsg3 ( ( 𝐹𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) ↔ ( ( 𝐹𝑉 ) ∈ ( SubGrp ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ∀ 𝑦 ∈ ( 𝐹𝑉 ) ( ( 𝑥 ( +g𝑆 ) 𝑦 ) ( -g𝑆 ) 𝑥 ) ∈ ( 𝐹𝑉 ) ) )
43 3 41 42 sylanbrc ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑉 ∈ ( NrmSGrp ‘ 𝑇 ) ) → ( 𝐹𝑉 ) ∈ ( NrmSGrp ‘ 𝑆 ) )