| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mxidlirred.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
mxidlirred.k |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
| 3 |
|
mxidlirred.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mxidlirred.m |
⊢ 𝑀 = ( 𝐾 ‘ { 𝑋 } ) |
| 5 |
|
mxidlirred.r |
⊢ ( 𝜑 → 𝑅 ∈ PID ) |
| 6 |
|
mxidlirred.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
mxidlirred.y |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 8 |
|
mxidlirred.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 9 |
|
df-pid |
⊢ PID = ( IDomn ∩ LPIR ) |
| 10 |
5 9
|
eleqtrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( IDomn ∩ LPIR ) ) |
| 11 |
10
|
elin1d |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑅 ∈ IDomn ) |
| 13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑋 ∈ 𝐵 ) |
| 14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑋 ≠ 0 ) |
| 15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 16 |
1 2 3 4 12 13 14 15
|
mxidlirredi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑋 ∈ ( Irred ‘ 𝑅 ) ) |
| 17 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 18 |
|
simplr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑥 ∈ 𝐵 ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑥 ∈ 𝐵 ) |
| 20 |
6
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑋 ∈ 𝐵 ) |
| 21 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 22 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 23 |
11
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 24 |
23
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑅 ∈ Ring ) |
| 25 |
24
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑅 ∈ Ring ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑅 ∈ Ring ) |
| 27 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑡 ∈ 𝐵 ) |
| 28 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 29 |
|
simp-8r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑋 ∈ ( Irred ‘ 𝑅 ) ) |
| 30 |
28 29
|
eqeltrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Irred ‘ 𝑅 ) ) |
| 31 |
|
eqid |
⊢ ( Irred ‘ 𝑅 ) = ( Irred ‘ 𝑅 ) |
| 32 |
31 1 21 22
|
irredmul |
⊢ ( ( 𝑡 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ∈ ( Irred ‘ 𝑅 ) ) → ( 𝑡 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) ) |
| 33 |
27 19 30 32
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑡 ∈ ( Unit ‘ 𝑅 ) ∨ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) ) |
| 34 |
|
simpr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
| 36 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
| 37 |
|
annim |
⊢ ( ( 𝑀 ⊆ 𝑘 ∧ ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ↔ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
| 38 |
36 37
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ( 𝑀 ⊆ 𝑘 ∧ ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
| 39 |
38
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) |
| 40 |
|
ioran |
⊢ ( ¬ ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ↔ ( ¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵 ) ) |
| 41 |
39 40
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ( ¬ 𝑘 = 𝑀 ∧ ¬ 𝑘 = 𝐵 ) ) |
| 42 |
41
|
simprd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ 𝑘 = 𝐵 ) |
| 43 |
42
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑘 ≠ 𝐵 ) |
| 44 |
43
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑘 ≠ 𝐵 ) |
| 45 |
35 44
|
eqnetrrd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝐾 ‘ { 𝑥 } ) ≠ 𝐵 ) |
| 46 |
45
|
neneqd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ ( 𝐾 ‘ { 𝑥 } ) = 𝐵 ) |
| 47 |
|
eqid |
⊢ ( 𝐾 ‘ { 𝑥 } ) = ( 𝐾 ‘ { 𝑥 } ) |
| 48 |
11
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑅 ∈ IDomn ) |
| 49 |
21 2 47 1 19 48
|
unitpidl1 |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( 𝐾 ‘ { 𝑥 } ) = 𝐵 ↔ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) ) |
| 50 |
46 49
|
mtbid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ 𝑥 ∈ ( Unit ‘ 𝑅 ) ) |
| 51 |
33 50
|
olcnd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑡 ∈ ( Unit ‘ 𝑅 ) ) |
| 52 |
28
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) = 𝑋 ) |
| 53 |
1 2 17 19 20 21 22 26 51 52
|
dvdsruassoi |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝑥 ( ∥r ‘ 𝑅 ) 𝑋 ∧ 𝑋 ( ∥r ‘ 𝑅 ) 𝑥 ) ) |
| 54 |
1 2 17 19 20 26
|
rspsnasso |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( ( 𝑥 ( ∥r ‘ 𝑅 ) 𝑋 ∧ 𝑋 ( ∥r ‘ 𝑅 ) 𝑥 ) ↔ ( 𝐾 ‘ { 𝑋 } ) = ( 𝐾 ‘ { 𝑥 } ) ) ) |
| 55 |
53 54
|
mpbid |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝐾 ‘ { 𝑋 } ) = ( 𝐾 ‘ { 𝑥 } ) ) |
| 56 |
55 35
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ( 𝐾 ‘ { 𝑋 } ) = 𝑘 ) |
| 57 |
4 56
|
eqtr2id |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑘 = 𝑀 ) |
| 58 |
41
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ¬ 𝑘 = 𝑀 ) |
| 59 |
58
|
ad4antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → ¬ 𝑘 = 𝑀 ) |
| 60 |
57 59
|
pm2.21dd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ∧ 𝑡 ∈ 𝐵 ) ∧ 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 61 |
38
|
simpld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑀 ⊆ 𝑘 ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑀 ⊆ 𝑘 ) |
| 63 |
6
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐵 ) |
| 64 |
2 1
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 65 |
23 63 64
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
| 66 |
65 4
|
sseqtrrdi |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑀 ) |
| 67 |
|
snssg |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ 𝑀 ↔ { 𝑋 } ⊆ 𝑀 ) ) |
| 68 |
67
|
biimpar |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ { 𝑋 } ⊆ 𝑀 ) → 𝑋 ∈ 𝑀 ) |
| 69 |
6 66 68
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ 𝑀 ) |
| 70 |
69
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑋 ∈ 𝑀 ) |
| 71 |
62 70
|
sseldd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑋 ∈ 𝑘 ) |
| 72 |
71 34
|
eleqtrd |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑋 ∈ ( 𝐾 ‘ { 𝑥 } ) ) |
| 73 |
1 22 2
|
elrspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 ∈ ( 𝐾 ‘ { 𝑥 } ) ↔ ∃ 𝑡 ∈ 𝐵 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
| 74 |
73
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑋 ∈ ( 𝐾 ‘ { 𝑥 } ) ) → ∃ 𝑡 ∈ 𝐵 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 75 |
25 18 72 74
|
syl21anc |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → ∃ 𝑡 ∈ 𝐵 𝑋 = ( 𝑡 ( .r ‘ 𝑅 ) 𝑥 ) ) |
| 76 |
60 75
|
r19.29a |
⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 77 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 78 |
10
|
elin2d |
⊢ ( 𝜑 → 𝑅 ∈ LPIR ) |
| 79 |
|
eqid |
⊢ ( LPIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) |
| 80 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 81 |
79 80
|
islpir |
⊢ ( 𝑅 ∈ LPIR ↔ ( 𝑅 ∈ Ring ∧ ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) ) |
| 82 |
81
|
simprbi |
⊢ ( 𝑅 ∈ LPIR → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
| 83 |
78 82
|
syl |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
| 84 |
83
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ( LIdeal ‘ 𝑅 ) = ( LPIdeal ‘ 𝑅 ) ) |
| 85 |
77 84
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑘 ∈ ( LPIdeal ‘ 𝑅 ) ) |
| 86 |
79 2 1
|
islpidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑘 ∈ ( LPIdeal ‘ 𝑅 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) ) |
| 87 |
86
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑘 ∈ ( LPIdeal ‘ 𝑅 ) ) → ∃ 𝑥 ∈ 𝐵 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
| 88 |
24 85 87
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → ∃ 𝑥 ∈ 𝐵 𝑘 = ( 𝐾 ‘ { 𝑥 } ) ) |
| 89 |
76 88
|
r19.29a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) ∧ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 90 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 91 |
31 21
|
irrednu |
⊢ ( 𝑋 ∈ ( Irred ‘ 𝑅 ) → ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) |
| 93 |
21 2 4 1 6 11
|
unitpidl1 |
⊢ ( 𝜑 → ( 𝑀 = 𝐵 ↔ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → ( 𝑀 = 𝐵 ↔ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) ) |
| 95 |
94
|
necon3abid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → ( 𝑀 ≠ 𝐵 ↔ ¬ 𝑋 ∈ ( Unit ‘ 𝑅 ) ) ) |
| 96 |
92 95
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → 𝑀 ≠ 𝐵 ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ≠ 𝐵 ) |
| 98 |
90 97
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ) |
| 99 |
1
|
ismxidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
| 100 |
23 99
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
| 101 |
|
df-3an |
⊢ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ↔ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) |
| 102 |
100 101
|
bitrdi |
⊢ ( 𝜑 → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
| 103 |
102
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ¬ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) ) |
| 104 |
103
|
biimpa |
⊢ ( ( 𝜑 ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ¬ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) |
| 105 |
104
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ¬ ( ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ) ∧ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) ) |
| 106 |
98 105
|
mpnanrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ¬ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
| 107 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ↔ ¬ ∀ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
| 108 |
106 107
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ∃ 𝑘 ∈ ( LIdeal ‘ 𝑅 ) ¬ ( 𝑀 ⊆ 𝑘 → ( 𝑘 = 𝑀 ∨ 𝑘 = 𝐵 ) ) ) |
| 109 |
89 108
|
r19.29a |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ∧ ¬ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 110 |
109
|
pm2.18da |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
| 111 |
16 110
|
impbida |
⊢ ( 𝜑 → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ 𝑋 ∈ ( Irred ‘ 𝑅 ) ) ) |