Description: Aprincipal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pid | ⊢ PID = ( IDomn ∩ LPIR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpid | ⊢ PID | |
1 | cidom | ⊢ IDomn | |
2 | clpir | ⊢ LPIR | |
3 | 1 2 | cin | ⊢ ( IDomn ∩ LPIR ) |
4 | 0 3 | wceq | ⊢ PID = ( IDomn ∩ LPIR ) |