Description: Aprincipal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-pid | |- PID = ( IDomn i^i LPIR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cpid | |- PID |
|
1 | cidom | |- IDomn |
|
2 | clpir | |- LPIR |
|
3 | 1 2 | cin | |- ( IDomn i^i LPIR ) |
4 | 0 3 | wceq | |- PID = ( IDomn i^i LPIR ) |