Description: Aprincipal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pid | |- PID = ( IDomn i^i LPIR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpid | |- PID |
|
| 1 | cidom | |- IDomn |
|
| 2 | clpir | |- LPIR |
|
| 3 | 1 2 | cin | |- ( IDomn i^i LPIR ) |
| 4 | 0 3 | wceq | |- PID = ( IDomn i^i LPIR ) |