Metamath Proof Explorer


Definition df-pid

Description: Aprincipal ideal domain is an integral domain satisfying the left principal ideal property. (Contributed by Stefan O'Rear, 29-Mar-2015)

Ref Expression
Assertion df-pid
|- PID = ( IDomn i^i LPIR )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpid
 |-  PID
1 cidom
 |-  IDomn
2 clpir
 |-  LPIR
3 1 2 cin
 |-  ( IDomn i^i LPIR )
4 0 3 wceq
 |-  PID = ( IDomn i^i LPIR )