| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssmxidl.1 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | ssmxidllem.1 | ⊢ 𝑃  =  { 𝑝  ∈  ( LIdeal ‘ 𝑅 )  ∣  ( 𝑝  ≠  𝐵  ∧  𝐼  ⊆  𝑝 ) } | 
						
							| 3 |  | ssmxidllem.2 | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | ssmxidllem.3 | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 5 |  | ssmxidllem.4 | ⊢ ( 𝜑  →  𝐼  ≠  𝐵 ) | 
						
							| 6 |  | ssmxidllem2.1 | ⊢ ( 𝜑  →  𝑍  ⊆  𝑃 ) | 
						
							| 7 |  | ssmxidllem2.2 | ⊢ ( 𝜑  →  𝑍  ≠  ∅ ) | 
						
							| 8 |  | ssmxidllem2.3 | ⊢ ( 𝜑  →   [⊊]   Or  𝑍 ) | 
						
							| 9 |  | neeq1 | ⊢ ( 𝑝  =  ∪  𝑍  →  ( 𝑝  ≠  𝐵  ↔  ∪  𝑍  ≠  𝐵 ) ) | 
						
							| 10 |  | sseq2 | ⊢ ( 𝑝  =  ∪  𝑍  →  ( 𝐼  ⊆  𝑝  ↔  𝐼  ⊆  ∪  𝑍 ) ) | 
						
							| 11 | 9 10 | anbi12d | ⊢ ( 𝑝  =  ∪  𝑍  →  ( ( 𝑝  ≠  𝐵  ∧  𝐼  ⊆  𝑝 )  ↔  ( ∪  𝑍  ≠  𝐵  ∧  𝐼  ⊆  ∪  𝑍 ) ) ) | 
						
							| 12 | 2 | ssrab3 | ⊢ 𝑃  ⊆  ( LIdeal ‘ 𝑅 ) | 
						
							| 13 | 6 12 | sstrdi | ⊢ ( 𝜑  →  𝑍  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 14 | 13 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 15 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 16 | 1 15 | lidlss | ⊢ ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  →  𝑗  ⊆  𝐵 ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ⊆  𝐵 ) | 
						
							| 18 | 17 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  𝑍 𝑗  ⊆  𝐵 ) | 
						
							| 19 |  | unissb | ⊢ ( ∪  𝑍  ⊆  𝐵  ↔  ∀ 𝑗  ∈  𝑍 𝑗  ⊆  𝐵 ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( 𝜑  →  ∪  𝑍  ⊆  𝐵 ) | 
						
							| 21 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑅  ∈  Ring ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 23 | 15 22 | lidl0cl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 0g ‘ 𝑅 )  ∈  𝑗 ) | 
						
							| 24 | 21 14 23 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 0g ‘ 𝑅 )  ∈  𝑗 ) | 
						
							| 25 |  | n0i | ⊢ ( ( 0g ‘ 𝑅 )  ∈  𝑗  →  ¬  𝑗  =  ∅ ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ¬  𝑗  =  ∅ ) | 
						
							| 27 | 26 | reximdva0 | ⊢ ( ( 𝜑  ∧  𝑍  ≠  ∅ )  →  ∃ 𝑗  ∈  𝑍 ¬  𝑗  =  ∅ ) | 
						
							| 28 | 7 27 | mpdan | ⊢ ( 𝜑  →  ∃ 𝑗  ∈  𝑍 ¬  𝑗  =  ∅ ) | 
						
							| 29 |  | rexnal | ⊢ ( ∃ 𝑗  ∈  𝑍 ¬  𝑗  =  ∅  ↔  ¬  ∀ 𝑗  ∈  𝑍 𝑗  =  ∅ ) | 
						
							| 30 | 28 29 | sylib | ⊢ ( 𝜑  →  ¬  ∀ 𝑗  ∈  𝑍 𝑗  =  ∅ ) | 
						
							| 31 |  | uni0c | ⊢ ( ∪  𝑍  =  ∅  ↔  ∀ 𝑗  ∈  𝑍 𝑗  =  ∅ ) | 
						
							| 32 | 31 | necon3abii | ⊢ ( ∪  𝑍  ≠  ∅  ↔  ¬  ∀ 𝑗  ∈  𝑍 𝑗  =  ∅ ) | 
						
							| 33 | 30 32 | sylibr | ⊢ ( 𝜑  →  ∪  𝑍  ≠  ∅ ) | 
						
							| 34 |  | eluni2 | ⊢ ( 𝑎  ∈  ∪  𝑍  ↔  ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖 ) | 
						
							| 35 |  | eluni2 | ⊢ ( 𝑏  ∈  ∪  𝑍  ↔  ∃ 𝑗  ∈  𝑍 𝑏  ∈  𝑗 ) | 
						
							| 36 | 34 35 | anbi12i | ⊢ ( ( 𝑎  ∈  ∪  𝑍  ∧  𝑏  ∈  ∪  𝑍 )  ↔  ( ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖  ∧  ∃ 𝑗  ∈  𝑍 𝑏  ∈  𝑗 ) ) | 
						
							| 37 |  | an32 | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖 )  ∧  𝑗  ∈  𝑍 )  ↔  ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖 ) ) | 
						
							| 38 | 3 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑅  ∈  Ring ) | 
						
							| 39 | 13 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  →  𝑍  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 40 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  →  𝑗  ∈  𝑍 ) | 
						
							| 41 | 39 40 | sseldd | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑗  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 43 |  | simp-6r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑥  ∈  𝐵 ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑖  ⊆  𝑗 ) | 
						
							| 45 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑎  ∈  𝑖 ) | 
						
							| 46 | 44 45 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑎  ∈  𝑗 ) | 
						
							| 47 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 48 | 15 1 47 | lidlmcl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝑗 ) )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 )  ∈  𝑗 ) | 
						
							| 49 | 38 42 43 46 48 | syl22anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 )  ∈  𝑗 ) | 
						
							| 50 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑏  ∈  𝑗 ) | 
						
							| 51 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 52 | 15 51 | lidlacl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 )  ∈  𝑗  ∧  𝑏  ∈  𝑗 ) )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝑗 ) | 
						
							| 53 | 38 42 49 50 52 | syl22anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝑗 ) | 
						
							| 54 | 40 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  𝑗  ∈  𝑍 ) | 
						
							| 55 |  | elunii | ⊢ ( ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝑗  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 56 | 53 54 55 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑖  ⊆  𝑗 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 57 | 3 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑅  ∈  Ring ) | 
						
							| 58 | 39 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑍  ⊆  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 59 |  | simplr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  →  𝑖  ∈  𝑍 ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑖  ∈  𝑍 ) | 
						
							| 61 | 58 60 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑖  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 62 |  | simp-6r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑥  ∈  𝐵 ) | 
						
							| 63 |  | simplr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑎  ∈  𝑖 ) | 
						
							| 64 | 15 1 47 | lidlmcl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑎  ∈  𝑖 ) )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 )  ∈  𝑖 ) | 
						
							| 65 | 57 61 62 63 64 | syl22anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 )  ∈  𝑖 ) | 
						
							| 66 |  | simpr | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑗  ⊆  𝑖 ) | 
						
							| 67 |  | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑏  ∈  𝑗 ) | 
						
							| 68 | 66 67 | sseldd | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  𝑏  ∈  𝑖 ) | 
						
							| 69 | 15 51 | lidlacl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑖  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 )  ∈  𝑖  ∧  𝑏  ∈  𝑖 ) )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝑖 ) | 
						
							| 70 | 57 61 65 68 69 | syl22anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝑖 ) | 
						
							| 71 |  | elunii | ⊢ ( ( ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝑖  ∧  𝑖  ∈  𝑍 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 72 | 70 60 71 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  ∧  𝑗  ⊆  𝑖 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 73 | 8 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  →   [⊊]   Or  𝑍 ) | 
						
							| 74 |  | sorpssi | ⊢ ( (  [⊊]   Or  𝑍  ∧  ( 𝑖  ∈  𝑍  ∧  𝑗  ∈  𝑍 ) )  →  ( 𝑖  ⊆  𝑗  ∨  𝑗  ⊆  𝑖 ) ) | 
						
							| 75 | 73 59 40 74 | syl12anc | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  →  ( 𝑖  ⊆  𝑗  ∨  𝑗  ⊆  𝑖 ) ) | 
						
							| 76 | 56 72 75 | mpjaodan | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  𝑖  ∈  𝑍 )  ∧  𝑎  ∈  𝑖 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 77 | 76 | r19.29an | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  ∧  ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 78 | 77 | an32s | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  𝑗  ∈  𝑍 )  ∧  ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖 )  ∧  𝑏  ∈  𝑗 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 79 | 37 78 | sylanb | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖 )  ∧  𝑗  ∈  𝑍 )  ∧  𝑏  ∈  𝑗 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 80 | 79 | r19.29an | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖 )  ∧  ∃ 𝑗  ∈  𝑍 𝑏  ∈  𝑗 )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 81 | 80 | anasss | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( ∃ 𝑖  ∈  𝑍 𝑎  ∈  𝑖  ∧  ∃ 𝑗  ∈  𝑍 𝑏  ∈  𝑗 ) )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 82 | 36 81 | sylan2b | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑎  ∈  ∪  𝑍  ∧  𝑏  ∈  ∪  𝑍 ) )  →  ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 83 | 82 | ralrimivva | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∀ 𝑎  ∈  ∪  𝑍 ∀ 𝑏  ∈  ∪  𝑍 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 84 | 83 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑎  ∈  ∪  𝑍 ∀ 𝑏  ∈  ∪  𝑍 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) | 
						
							| 85 | 15 1 51 47 | islidl | ⊢ ( ∪  𝑍  ∈  ( LIdeal ‘ 𝑅 )  ↔  ( ∪  𝑍  ⊆  𝐵  ∧  ∪  𝑍  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐵 ∀ 𝑎  ∈  ∪  𝑍 ∀ 𝑏  ∈  ∪  𝑍 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑎 ) ( +g ‘ 𝑅 ) 𝑏 )  ∈  ∪  𝑍 ) ) | 
						
							| 86 | 20 33 84 85 | syl3anbrc | ⊢ ( 𝜑  →  ∪  𝑍  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 87 | 6 | sselda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ∈  𝑃 ) | 
						
							| 88 |  | neeq1 | ⊢ ( 𝑝  =  𝑗  →  ( 𝑝  ≠  𝐵  ↔  𝑗  ≠  𝐵 ) ) | 
						
							| 89 |  | sseq2 | ⊢ ( 𝑝  =  𝑗  →  ( 𝐼  ⊆  𝑝  ↔  𝐼  ⊆  𝑗 ) ) | 
						
							| 90 | 88 89 | anbi12d | ⊢ ( 𝑝  =  𝑗  →  ( ( 𝑝  ≠  𝐵  ∧  𝐼  ⊆  𝑝 )  ↔  ( 𝑗  ≠  𝐵  ∧  𝐼  ⊆  𝑗 ) ) ) | 
						
							| 91 | 90 2 | elrab2 | ⊢ ( 𝑗  ∈  𝑃  ↔  ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  ( 𝑗  ≠  𝐵  ∧  𝐼  ⊆  𝑗 ) ) ) | 
						
							| 92 | 87 91 | sylib | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  ( 𝑗  ≠  𝐵  ∧  𝐼  ⊆  𝑗 ) ) ) | 
						
							| 93 | 92 | simprld | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑗  ≠  𝐵 ) | 
						
							| 94 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 95 | 1 94 | pridln1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑗  ∈  ( LIdeal ‘ 𝑅 )  ∧  𝑗  ≠  𝐵 )  →  ¬  ( 1r ‘ 𝑅 )  ∈  𝑗 ) | 
						
							| 96 | 21 14 93 95 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ¬  ( 1r ‘ 𝑅 )  ∈  𝑗 ) | 
						
							| 97 | 96 | nrexdv | ⊢ ( 𝜑  →  ¬  ∃ 𝑗  ∈  𝑍 ( 1r ‘ 𝑅 )  ∈  𝑗 ) | 
						
							| 98 |  | eluni2 | ⊢ ( ( 1r ‘ 𝑅 )  ∈  ∪  𝑍  ↔  ∃ 𝑗  ∈  𝑍 ( 1r ‘ 𝑅 )  ∈  𝑗 ) | 
						
							| 99 | 97 98 | sylnibr | ⊢ ( 𝜑  →  ¬  ( 1r ‘ 𝑅 )  ∈  ∪  𝑍 ) | 
						
							| 100 | 15 1 94 | lidl1el | ⊢ ( ( 𝑅  ∈  Ring  ∧  ∪  𝑍  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( ( 1r ‘ 𝑅 )  ∈  ∪  𝑍  ↔  ∪  𝑍  =  𝐵 ) ) | 
						
							| 101 | 3 86 100 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑅 )  ∈  ∪  𝑍  ↔  ∪  𝑍  =  𝐵 ) ) | 
						
							| 102 | 101 | necon3bbid | ⊢ ( 𝜑  →  ( ¬  ( 1r ‘ 𝑅 )  ∈  ∪  𝑍  ↔  ∪  𝑍  ≠  𝐵 ) ) | 
						
							| 103 | 99 102 | mpbid | ⊢ ( 𝜑  →  ∪  𝑍  ≠  𝐵 ) | 
						
							| 104 | 92 | simprrd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐼  ⊆  𝑗 ) | 
						
							| 105 | 104 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑗  ∈  𝑍 𝐼  ⊆  𝑗 ) | 
						
							| 106 |  | ssint | ⊢ ( 𝐼  ⊆  ∩  𝑍  ↔  ∀ 𝑗  ∈  𝑍 𝐼  ⊆  𝑗 ) | 
						
							| 107 | 105 106 | sylibr | ⊢ ( 𝜑  →  𝐼  ⊆  ∩  𝑍 ) | 
						
							| 108 |  | intssuni | ⊢ ( 𝑍  ≠  ∅  →  ∩  𝑍  ⊆  ∪  𝑍 ) | 
						
							| 109 | 7 108 | syl | ⊢ ( 𝜑  →  ∩  𝑍  ⊆  ∪  𝑍 ) | 
						
							| 110 | 107 109 | sstrd | ⊢ ( 𝜑  →  𝐼  ⊆  ∪  𝑍 ) | 
						
							| 111 | 103 110 | jca | ⊢ ( 𝜑  →  ( ∪  𝑍  ≠  𝐵  ∧  𝐼  ⊆  ∪  𝑍 ) ) | 
						
							| 112 | 11 86 111 | elrabd | ⊢ ( 𝜑  →  ∪  𝑍  ∈  { 𝑝  ∈  ( LIdeal ‘ 𝑅 )  ∣  ( 𝑝  ≠  𝐵  ∧  𝐼  ⊆  𝑝 ) } ) | 
						
							| 113 | 112 2 | eleqtrrdi | ⊢ ( 𝜑  →  ∪  𝑍  ∈  𝑃 ) |