| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssmxidl.1 |
|
| 2 |
|
ssmxidllem.1 |
|
| 3 |
|
ssmxidllem.2 |
|
| 4 |
|
ssmxidllem.3 |
|
| 5 |
|
ssmxidllem.4 |
|
| 6 |
|
ssmxidllem2.1 |
|
| 7 |
|
ssmxidllem2.2 |
|
| 8 |
|
ssmxidllem2.3 |
|
| 9 |
|
neeq1 |
|
| 10 |
|
sseq2 |
|
| 11 |
9 10
|
anbi12d |
|
| 12 |
2
|
ssrab3 |
|
| 13 |
6 12
|
sstrdi |
|
| 14 |
13
|
sselda |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
lidlss |
|
| 17 |
14 16
|
syl |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
|
unissb |
|
| 20 |
18 19
|
sylibr |
|
| 21 |
3
|
adantr |
|
| 22 |
|
eqid |
|
| 23 |
15 22
|
lidl0cl |
|
| 24 |
21 14 23
|
syl2anc |
|
| 25 |
|
n0i |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
reximdva0 |
|
| 28 |
7 27
|
mpdan |
|
| 29 |
|
rexnal |
|
| 30 |
28 29
|
sylib |
|
| 31 |
|
uni0c |
|
| 32 |
31
|
necon3abii |
|
| 33 |
30 32
|
sylibr |
|
| 34 |
|
eluni2 |
|
| 35 |
|
eluni2 |
|
| 36 |
34 35
|
anbi12i |
|
| 37 |
|
an32 |
|
| 38 |
3
|
ad6antr |
|
| 39 |
13
|
ad5antr |
|
| 40 |
|
simp-4r |
|
| 41 |
39 40
|
sseldd |
|
| 42 |
41
|
adantr |
|
| 43 |
|
simp-6r |
|
| 44 |
|
simpr |
|
| 45 |
|
simplr |
|
| 46 |
44 45
|
sseldd |
|
| 47 |
|
eqid |
|
| 48 |
15 1 47
|
lidlmcl |
|
| 49 |
38 42 43 46 48
|
syl22anc |
|
| 50 |
|
simp-4r |
|
| 51 |
|
eqid |
|
| 52 |
15 51
|
lidlacl |
|
| 53 |
38 42 49 50 52
|
syl22anc |
|
| 54 |
40
|
adantr |
|
| 55 |
|
elunii |
|
| 56 |
53 54 55
|
syl2anc |
|
| 57 |
3
|
ad6antr |
|
| 58 |
39
|
adantr |
|
| 59 |
|
simplr |
|
| 60 |
59
|
adantr |
|
| 61 |
58 60
|
sseldd |
|
| 62 |
|
simp-6r |
|
| 63 |
|
simplr |
|
| 64 |
15 1 47
|
lidlmcl |
|
| 65 |
57 61 62 63 64
|
syl22anc |
|
| 66 |
|
simpr |
|
| 67 |
|
simp-4r |
|
| 68 |
66 67
|
sseldd |
|
| 69 |
15 51
|
lidlacl |
|
| 70 |
57 61 65 68 69
|
syl22anc |
|
| 71 |
|
elunii |
|
| 72 |
70 60 71
|
syl2anc |
|
| 73 |
8
|
ad5antr |
|
| 74 |
|
sorpssi |
|
| 75 |
73 59 40 74
|
syl12anc |
|
| 76 |
56 72 75
|
mpjaodan |
|
| 77 |
76
|
r19.29an |
|
| 78 |
77
|
an32s |
|
| 79 |
37 78
|
sylanb |
|
| 80 |
79
|
r19.29an |
|
| 81 |
80
|
anasss |
|
| 82 |
36 81
|
sylan2b |
|
| 83 |
82
|
ralrimivva |
|
| 84 |
83
|
ralrimiva |
|
| 85 |
15 1 51 47
|
islidl |
|
| 86 |
20 33 84 85
|
syl3anbrc |
|
| 87 |
6
|
sselda |
|
| 88 |
|
neeq1 |
|
| 89 |
|
sseq2 |
|
| 90 |
88 89
|
anbi12d |
|
| 91 |
90 2
|
elrab2 |
|
| 92 |
87 91
|
sylib |
|
| 93 |
92
|
simprld |
|
| 94 |
|
eqid |
|
| 95 |
1 94
|
pridln1 |
|
| 96 |
21 14 93 95
|
syl3anc |
|
| 97 |
96
|
nrexdv |
|
| 98 |
|
eluni2 |
|
| 99 |
97 98
|
sylnibr |
|
| 100 |
15 1 94
|
lidl1el |
|
| 101 |
3 86 100
|
syl2anc |
|
| 102 |
101
|
necon3bbid |
|
| 103 |
99 102
|
mpbid |
|
| 104 |
92
|
simprrd |
|
| 105 |
104
|
ralrimiva |
|
| 106 |
|
ssint |
|
| 107 |
105 106
|
sylibr |
|
| 108 |
|
intssuni |
|
| 109 |
7 108
|
syl |
|
| 110 |
107 109
|
sstrd |
|
| 111 |
103 110
|
jca |
|
| 112 |
11 86 111
|
elrabd |
|
| 113 |
112 2
|
eleqtrrdi |
|