Step |
Hyp |
Ref |
Expression |
1 |
|
ssmxidl.1 |
|
2 |
|
neeq1 |
|
3 |
|
sseq2 |
|
4 |
2 3
|
anbi12d |
|
5 |
|
simp2 |
|
6 |
|
simp3 |
|
7 |
|
ssidd |
|
8 |
6 7
|
jca |
|
9 |
4 5 8
|
elrabd |
|
10 |
9
|
ne0d |
|
11 |
|
eqid |
|
12 |
|
simpl1 |
|
13 |
|
simpl2 |
|
14 |
|
simpl3 |
|
15 |
|
simpr1 |
|
16 |
|
simpr2 |
|
17 |
|
simpr3 |
|
18 |
1 11 12 13 14 15 16 17
|
ssmxidllem |
|
19 |
18
|
ex |
|
20 |
19
|
alrimiv |
|
21 |
|
fvex |
|
22 |
21
|
rabex |
|
23 |
22
|
zornn0 |
|
24 |
10 20 23
|
syl2anc |
|
25 |
|
neeq1 |
|
26 |
|
sseq2 |
|
27 |
25 26
|
anbi12d |
|
28 |
27
|
elrab |
|
29 |
28
|
anbi2i |
|
30 |
|
simpll1 |
|
31 |
|
simplrl |
|
32 |
|
simplr |
|
33 |
32
|
simprld |
|
34 |
|
psseq2 |
|
35 |
34
|
notbid |
|
36 |
|
simp-4r |
|
37 |
|
neeq1 |
|
38 |
|
sseq2 |
|
39 |
37 38
|
anbi12d |
|
40 |
|
simpllr |
|
41 |
|
simpr |
|
42 |
41
|
neqned |
|
43 |
|
simp-5r |
|
44 |
43
|
simprrd |
|
45 |
|
simplr |
|
46 |
44 45
|
sstrd |
|
47 |
42 46
|
jca |
|
48 |
39 40 47
|
elrabd |
|
49 |
35 36 48
|
rspcdva |
|
50 |
|
npss |
|
51 |
50
|
biimpi |
|
52 |
49 45 51
|
sylc |
|
53 |
52
|
equcomd |
|
54 |
53
|
ex |
|
55 |
54
|
orrd |
|
56 |
55
|
orcomd |
|
57 |
56
|
ex |
|
58 |
57
|
ralrimiva |
|
59 |
1
|
ismxidl |
|
60 |
59
|
biimpar |
|
61 |
30 31 33 58 60
|
syl13anc |
|
62 |
32
|
simprrd |
|
63 |
61 62
|
jca |
|
64 |
29 63
|
sylanb |
|
65 |
64
|
expl |
|
66 |
65
|
reximdv2 |
|
67 |
24 66
|
mpd |
|