Metamath Proof Explorer


Theorem ssmxidl

Description: Let R be a ring, and let I be a proper ideal of R . Then there is a maximal ideal of R containing I . (Contributed by Thierry Arnoux, 10-Apr-2024)

Ref Expression
Hypothesis ssmxidl.1 B=BaseR
Assertion ssmxidl Could not format assertion : No typesetting found for |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) with typecode |-

Proof

Step Hyp Ref Expression
1 ssmxidl.1 B=BaseR
2 neeq1 p=IpBIB
3 sseq2 p=IIpII
4 2 3 anbi12d p=IpBIpIBII
5 simp2 RRingILIdealRIBILIdealR
6 simp3 RRingILIdealRIBIB
7 ssidd RRingILIdealRIBII
8 6 7 jca RRingILIdealRIBIBII
9 4 5 8 elrabd RRingILIdealRIBIpLIdealR|pBIp
10 9 ne0d RRingILIdealRIBpLIdealR|pBIp
11 eqid pLIdealR|pBIp=pLIdealR|pBIp
12 simpl1 RRingILIdealRIBzpLIdealR|pBIpz[⊂]OrzRRing
13 simpl2 RRingILIdealRIBzpLIdealR|pBIpz[⊂]OrzILIdealR
14 simpl3 RRingILIdealRIBzpLIdealR|pBIpz[⊂]OrzIB
15 simpr1 RRingILIdealRIBzpLIdealR|pBIpz[⊂]OrzzpLIdealR|pBIp
16 simpr2 RRingILIdealRIBzpLIdealR|pBIpz[⊂]Orzz
17 simpr3 RRingILIdealRIBzpLIdealR|pBIpz[⊂]Orz[⊂]Orz
18 1 11 12 13 14 15 16 17 ssmxidllem RRingILIdealRIBzpLIdealR|pBIpz[⊂]OrzzpLIdealR|pBIp
19 18 ex RRingILIdealRIBzpLIdealR|pBIpz[⊂]OrzzpLIdealR|pBIp
20 19 alrimiv RRingILIdealRIBzzpLIdealR|pBIpz[⊂]OrzzpLIdealR|pBIp
21 fvex LIdealRV
22 21 rabex pLIdealR|pBIpV
23 22 zornn0 pLIdealR|pBIpzzpLIdealR|pBIpz[⊂]OrzzpLIdealR|pBIpmpLIdealR|pBIpjpLIdealR|pBIp¬mj
24 10 20 23 syl2anc RRingILIdealRIBmpLIdealR|pBIpjpLIdealR|pBIp¬mj
25 neeq1 p=mpBmB
26 sseq2 p=mIpIm
27 25 26 anbi12d p=mpBIpmBIm
28 27 elrab mpLIdealR|pBIpmLIdealRmBIm
29 28 anbi2i RRingILIdealRIBmpLIdealR|pBIpRRingILIdealRIBmLIdealRmBIm
30 simpll1 RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjRRing
31 simplrl RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjmLIdealR
32 simplr RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjmLIdealRmBIm
33 32 simprld RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjmB
34 psseq2 j=kmjmk
35 34 notbid j=k¬mj¬mk
36 simp-4r RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BjpLIdealR|pBIp¬mj
37 neeq1 p=kpBkB
38 sseq2 p=kIpIk
39 37 38 anbi12d p=kpBIpkBIk
40 simpllr RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BkLIdealR
41 simpr RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=B¬k=B
42 41 neqned RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BkB
43 simp-5r RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BmLIdealRmBIm
44 43 simprrd RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BIm
45 simplr RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=Bmk
46 44 45 sstrd RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BIk
47 42 46 jca RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BkBIk
48 39 40 47 elrabd RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=BkpLIdealR|pBIp
49 35 36 48 rspcdva RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=B¬mk
50 npss ¬mkmkm=k
51 50 biimpi ¬mkmkm=k
52 49 45 51 sylc RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=Bm=k
53 52 equcomd RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=Bk=m
54 53 ex RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmk¬k=Bk=m
55 54 orrd RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmkk=Bk=m
56 55 orcomd RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmkk=mk=B
57 56 ex RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmkk=mk=B
58 57 ralrimiva RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjkLIdealRmkk=mk=B
59 1 ismxidl Could not format ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= B /\ A. k e. ( LIdeal ` R ) ( m C_ k -> ( k = m \/ k = B ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= B /\ A. k e. ( LIdeal ` R ) ( m C_ k -> ( k = m \/ k = B ) ) ) ) ) with typecode |-
60 59 biimpar Could not format ( ( R e. Ring /\ ( m e. ( LIdeal ` R ) /\ m =/= B /\ A. k e. ( LIdeal ` R ) ( m C_ k -> ( k = m \/ k = B ) ) ) ) -> m e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( R e. Ring /\ ( m e. ( LIdeal ` R ) /\ m =/= B /\ A. k e. ( LIdeal ` R ) ( m C_ k -> ( k = m \/ k = B ) ) ) ) -> m e. ( MaxIdeal ` R ) ) with typecode |-
61 30 31 33 58 60 syl13anc Could not format ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> m e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> m e. ( MaxIdeal ` R ) ) with typecode |-
62 32 simprrd RRingILIdealRIBmLIdealRmBImjpLIdealR|pBIp¬mjIm
63 61 62 jca Could not format ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) : No typesetting found for |- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) with typecode |-
64 29 63 sylanb Could not format ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) : No typesetting found for |- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) with typecode |-
65 64 expl Could not format ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( ( m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) ) : No typesetting found for |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( ( m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) ) with typecode |-
66 65 reximdv2 Could not format ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( E. m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j -> E. m e. ( MaxIdeal ` R ) I C_ m ) ) : No typesetting found for |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( E. m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j -> E. m e. ( MaxIdeal ` R ) I C_ m ) ) with typecode |-
67 24 66 mpd Could not format ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) : No typesetting found for |- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) with typecode |-