| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssmxidl.1 |
|
| 2 |
|
neeq1 |
|
| 3 |
|
sseq2 |
|
| 4 |
2 3
|
anbi12d |
|
| 5 |
|
simp2 |
|
| 6 |
|
simp3 |
|
| 7 |
|
ssidd |
|
| 8 |
6 7
|
jca |
|
| 9 |
4 5 8
|
elrabd |
|
| 10 |
9
|
ne0d |
|
| 11 |
|
eqid |
|
| 12 |
|
simpl1 |
|
| 13 |
|
simpl2 |
|
| 14 |
|
simpl3 |
|
| 15 |
|
simpr1 |
|
| 16 |
|
simpr2 |
|
| 17 |
|
simpr3 |
|
| 18 |
1 11 12 13 14 15 16 17
|
ssmxidllem |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
alrimiv |
|
| 21 |
|
fvex |
|
| 22 |
21
|
rabex |
|
| 23 |
22
|
zornn0 |
|
| 24 |
10 20 23
|
syl2anc |
|
| 25 |
|
neeq1 |
|
| 26 |
|
sseq2 |
|
| 27 |
25 26
|
anbi12d |
|
| 28 |
27
|
elrab |
|
| 29 |
28
|
anbi2i |
|
| 30 |
|
simpll1 |
|
| 31 |
|
simplrl |
|
| 32 |
|
simplr |
|
| 33 |
32
|
simprld |
|
| 34 |
|
psseq2 |
|
| 35 |
34
|
notbid |
|
| 36 |
|
simp-4r |
|
| 37 |
|
neeq1 |
|
| 38 |
|
sseq2 |
|
| 39 |
37 38
|
anbi12d |
|
| 40 |
|
simpllr |
|
| 41 |
|
simpr |
|
| 42 |
41
|
neqned |
|
| 43 |
|
simp-5r |
|
| 44 |
43
|
simprrd |
|
| 45 |
|
simplr |
|
| 46 |
44 45
|
sstrd |
|
| 47 |
42 46
|
jca |
|
| 48 |
39 40 47
|
elrabd |
|
| 49 |
35 36 48
|
rspcdva |
|
| 50 |
|
npss |
|
| 51 |
50
|
biimpi |
|
| 52 |
49 45 51
|
sylc |
|
| 53 |
52
|
equcomd |
|
| 54 |
53
|
ex |
|
| 55 |
54
|
orrd |
|
| 56 |
55
|
orcomd |
|
| 57 |
56
|
ex |
|
| 58 |
57
|
ralrimiva |
|
| 59 |
1
|
ismxidl |
|
| 60 |
59
|
biimpar |
|
| 61 |
30 31 33 58 60
|
syl13anc |
|
| 62 |
32
|
simprrd |
|
| 63 |
61 62
|
jca |
|
| 64 |
29 63
|
sylanb |
|
| 65 |
64
|
expl |
|
| 66 |
65
|
reximdv2 |
|
| 67 |
24 66
|
mpd |
|