Metamath Proof Explorer


Theorem ismxidl

Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1 B = Base R
Assertion ismxidl R Ring M MaxIdeal R M LIdeal R M B j LIdeal R M j j = M j = B

Proof

Step Hyp Ref Expression
1 mxidlval.1 B = Base R
2 1 mxidlval R Ring MaxIdeal R = i LIdeal R | i B j LIdeal R i j j = i j = B
3 2 eleq2d R Ring M MaxIdeal R M i LIdeal R | i B j LIdeal R i j j = i j = B
4 neeq1 i = M i B M B
5 sseq1 i = M i j M j
6 eqeq2 i = M j = i j = M
7 6 orbi1d i = M j = i j = B j = M j = B
8 5 7 imbi12d i = M i j j = i j = B M j j = M j = B
9 8 ralbidv i = M j LIdeal R i j j = i j = B j LIdeal R M j j = M j = B
10 4 9 anbi12d i = M i B j LIdeal R i j j = i j = B M B j LIdeal R M j j = M j = B
11 10 elrab M i LIdeal R | i B j LIdeal R i j j = i j = B M LIdeal R M B j LIdeal R M j j = M j = B
12 3anass M LIdeal R M B j LIdeal R M j j = M j = B M LIdeal R M B j LIdeal R M j j = M j = B
13 11 12 bitr4i M i LIdeal R | i B j LIdeal R i j j = i j = B M LIdeal R M B j LIdeal R M j j = M j = B
14 3 13 bitrdi R Ring M MaxIdeal R M LIdeal R M B j LIdeal R M j j = M j = B