Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlval.1 |
|- B = ( Base ` R ) |
2 |
1
|
mxidlval |
|- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) |
3 |
2
|
eleq2d |
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) ) |
4 |
|
neeq1 |
|- ( i = M -> ( i =/= B <-> M =/= B ) ) |
5 |
|
sseq1 |
|- ( i = M -> ( i C_ j <-> M C_ j ) ) |
6 |
|
eqeq2 |
|- ( i = M -> ( j = i <-> j = M ) ) |
7 |
6
|
orbi1d |
|- ( i = M -> ( ( j = i \/ j = B ) <-> ( j = M \/ j = B ) ) ) |
8 |
5 7
|
imbi12d |
|- ( i = M -> ( ( i C_ j -> ( j = i \/ j = B ) ) <-> ( M C_ j -> ( j = M \/ j = B ) ) ) ) |
9 |
8
|
ralbidv |
|- ( i = M -> ( A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) <-> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) |
10 |
4 9
|
anbi12d |
|- ( i = M -> ( ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) <-> ( M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) |
11 |
10
|
elrab |
|- ( M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } <-> ( M e. ( LIdeal ` R ) /\ ( M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) |
12 |
|
3anass |
|- ( ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) <-> ( M e. ( LIdeal ` R ) /\ ( M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) |
13 |
11 12
|
bitr4i |
|- ( M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) |
14 |
3 13
|
bitrdi |
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) |