Metamath Proof Explorer


Theorem ismxidl

Description: The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1
|- B = ( Base ` R )
Assertion ismxidl
|- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mxidlval.1
 |-  B = ( Base ` R )
2 1 mxidlval
 |-  ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } )
3 2 eleq2d
 |-  ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) )
4 neeq1
 |-  ( i = M -> ( i =/= B <-> M =/= B ) )
5 sseq1
 |-  ( i = M -> ( i C_ j <-> M C_ j ) )
6 eqeq2
 |-  ( i = M -> ( j = i <-> j = M ) )
7 6 orbi1d
 |-  ( i = M -> ( ( j = i \/ j = B ) <-> ( j = M \/ j = B ) ) )
8 5 7 imbi12d
 |-  ( i = M -> ( ( i C_ j -> ( j = i \/ j = B ) ) <-> ( M C_ j -> ( j = M \/ j = B ) ) ) )
9 8 ralbidv
 |-  ( i = M -> ( A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) <-> A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) )
10 4 9 anbi12d
 |-  ( i = M -> ( ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) <-> ( M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) )
11 10 elrab
 |-  ( M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } <-> ( M e. ( LIdeal ` R ) /\ ( M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) )
12 3anass
 |-  ( ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) <-> ( M e. ( LIdeal ` R ) /\ ( M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) )
13 11 12 bitr4i
 |-  ( M e. { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) )
14 3 13 bitrdi
 |-  ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) )