Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlval.1 |
|- B = ( Base ` R ) |
2 |
|
fveq2 |
|- ( r = R -> ( LIdeal ` r ) = ( LIdeal ` R ) ) |
3 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
4 |
3 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
5 |
4
|
neeq2d |
|- ( r = R -> ( i =/= ( Base ` r ) <-> i =/= B ) ) |
6 |
4
|
eqeq2d |
|- ( r = R -> ( j = ( Base ` r ) <-> j = B ) ) |
7 |
6
|
orbi2d |
|- ( r = R -> ( ( j = i \/ j = ( Base ` r ) ) <-> ( j = i \/ j = B ) ) ) |
8 |
7
|
imbi2d |
|- ( r = R -> ( ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) <-> ( i C_ j -> ( j = i \/ j = B ) ) ) ) |
9 |
2 8
|
raleqbidv |
|- ( r = R -> ( A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) <-> A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) ) |
10 |
5 9
|
anbi12d |
|- ( r = R -> ( ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) <-> ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) ) ) |
11 |
2 10
|
rabeqbidv |
|- ( r = R -> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) |
12 |
|
df-mxidl |
|- MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) |
13 |
|
fvex |
|- ( LIdeal ` R ) e. _V |
14 |
13
|
rabex |
|- { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } e. _V |
15 |
11 12 14
|
fvmpt |
|- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } ) |