Metamath Proof Explorer


Theorem mxidlval

Description: The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)

Ref Expression
Hypothesis mxidlval.1
|- B = ( Base ` R )
Assertion mxidlval
|- ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } )

Proof

Step Hyp Ref Expression
1 mxidlval.1
 |-  B = ( Base ` R )
2 fveq2
 |-  ( r = R -> ( LIdeal ` r ) = ( LIdeal ` R ) )
3 fveq2
 |-  ( r = R -> ( Base ` r ) = ( Base ` R ) )
4 3 1 eqtr4di
 |-  ( r = R -> ( Base ` r ) = B )
5 4 neeq2d
 |-  ( r = R -> ( i =/= ( Base ` r ) <-> i =/= B ) )
6 4 eqeq2d
 |-  ( r = R -> ( j = ( Base ` r ) <-> j = B ) )
7 6 orbi2d
 |-  ( r = R -> ( ( j = i \/ j = ( Base ` r ) ) <-> ( j = i \/ j = B ) ) )
8 7 imbi2d
 |-  ( r = R -> ( ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) <-> ( i C_ j -> ( j = i \/ j = B ) ) ) )
9 2 8 raleqbidv
 |-  ( r = R -> ( A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) <-> A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) )
10 5 9 anbi12d
 |-  ( r = R -> ( ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) <-> ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) ) )
11 2 10 rabeqbidv
 |-  ( r = R -> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } )
12 df-mxidl
 |-  MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } )
13 fvex
 |-  ( LIdeal ` R ) e. _V
14 13 rabex
 |-  { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } e. _V
15 11 12 14 fvmpt
 |-  ( R e. Ring -> ( MaxIdeal ` R ) = { i e. ( LIdeal ` R ) | ( i =/= B /\ A. j e. ( LIdeal ` R ) ( i C_ j -> ( j = i \/ j = B ) ) ) } )