| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmxidl |
|- MaxIdeal |
| 1 |
|
vr |
|- r |
| 2 |
|
crg |
|- Ring |
| 3 |
|
vi |
|- i |
| 4 |
|
clidl |
|- LIdeal |
| 5 |
1
|
cv |
|- r |
| 6 |
5 4
|
cfv |
|- ( LIdeal ` r ) |
| 7 |
3
|
cv |
|- i |
| 8 |
|
cbs |
|- Base |
| 9 |
5 8
|
cfv |
|- ( Base ` r ) |
| 10 |
7 9
|
wne |
|- i =/= ( Base ` r ) |
| 11 |
|
vj |
|- j |
| 12 |
11
|
cv |
|- j |
| 13 |
7 12
|
wss |
|- i C_ j |
| 14 |
12 7
|
wceq |
|- j = i |
| 15 |
12 9
|
wceq |
|- j = ( Base ` r ) |
| 16 |
14 15
|
wo |
|- ( j = i \/ j = ( Base ` r ) ) |
| 17 |
13 16
|
wi |
|- ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) |
| 18 |
17 11 6
|
wral |
|- A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) |
| 19 |
10 18
|
wa |
|- ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) |
| 20 |
19 3 6
|
crab |
|- { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } |
| 21 |
1 2 20
|
cmpt |
|- ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) |
| 22 |
0 21
|
wceq |
|- MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) |