Step |
Hyp |
Ref |
Expression |
0 |
|
cmxidl |
|- MaxIdeal |
1 |
|
vr |
|- r |
2 |
|
crg |
|- Ring |
3 |
|
vi |
|- i |
4 |
|
clidl |
|- LIdeal |
5 |
1
|
cv |
|- r |
6 |
5 4
|
cfv |
|- ( LIdeal ` r ) |
7 |
3
|
cv |
|- i |
8 |
|
cbs |
|- Base |
9 |
5 8
|
cfv |
|- ( Base ` r ) |
10 |
7 9
|
wne |
|- i =/= ( Base ` r ) |
11 |
|
vj |
|- j |
12 |
11
|
cv |
|- j |
13 |
7 12
|
wss |
|- i C_ j |
14 |
12 7
|
wceq |
|- j = i |
15 |
12 9
|
wceq |
|- j = ( Base ` r ) |
16 |
14 15
|
wo |
|- ( j = i \/ j = ( Base ` r ) ) |
17 |
13 16
|
wi |
|- ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) |
18 |
17 11 6
|
wral |
|- A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) |
19 |
10 18
|
wa |
|- ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) |
20 |
19 3 6
|
crab |
|- { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } |
21 |
1 2 20
|
cmpt |
|- ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) |
22 |
0 21
|
wceq |
|- MaxIdeal = ( r e. Ring |-> { i e. ( LIdeal ` r ) | ( i =/= ( Base ` r ) /\ A. j e. ( LIdeal ` r ) ( i C_ j -> ( j = i \/ j = ( Base ` r ) ) ) ) } ) |