Step |
Hyp |
Ref |
Expression |
0 |
|
cmxidl |
⊢ MaxIdeal |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
crg |
⊢ Ring |
3 |
|
vi |
⊢ 𝑖 |
4 |
|
clidl |
⊢ LIdeal |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( LIdeal ‘ 𝑟 ) |
7 |
3
|
cv |
⊢ 𝑖 |
8 |
|
cbs |
⊢ Base |
9 |
5 8
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
10 |
7 9
|
wne |
⊢ 𝑖 ≠ ( Base ‘ 𝑟 ) |
11 |
|
vj |
⊢ 𝑗 |
12 |
11
|
cv |
⊢ 𝑗 |
13 |
7 12
|
wss |
⊢ 𝑖 ⊆ 𝑗 |
14 |
12 7
|
wceq |
⊢ 𝑗 = 𝑖 |
15 |
12 9
|
wceq |
⊢ 𝑗 = ( Base ‘ 𝑟 ) |
16 |
14 15
|
wo |
⊢ ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) |
17 |
13 16
|
wi |
⊢ ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) |
18 |
17 11 6
|
wral |
⊢ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) |
19 |
10 18
|
wa |
⊢ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ) |
20 |
19 3 6
|
crab |
⊢ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ) } |
21 |
1 2 20
|
cmpt |
⊢ ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ) } ) |
22 |
0 21
|
wceq |
⊢ MaxIdeal = ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ) } ) |