Step |
Hyp |
Ref |
Expression |
1 |
|
mxidlval.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( LIdeal ‘ 𝑟 ) = ( LIdeal ‘ 𝑅 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
5 |
4
|
neeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑖 ≠ ( Base ‘ 𝑟 ) ↔ 𝑖 ≠ 𝐵 ) ) |
6 |
4
|
eqeq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑗 = ( Base ‘ 𝑟 ) ↔ 𝑗 = 𝐵 ) ) |
7 |
6
|
orbi2d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ↔ ( 𝑗 = 𝑖 ∨ 𝑗 = 𝐵 ) ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ↔ ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝐵 ) ) ) ) |
9 |
2 8
|
raleqbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ↔ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝐵 ) ) ) ) |
10 |
5 9
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ) ↔ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝐵 ) ) ) ) ) |
11 |
2 10
|
rabeqbidv |
⊢ ( 𝑟 = 𝑅 → { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ) } = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝐵 ) ) ) } ) |
12 |
|
df-mxidl |
⊢ MaxIdeal = ( 𝑟 ∈ Ring ↦ { 𝑖 ∈ ( LIdeal ‘ 𝑟 ) ∣ ( 𝑖 ≠ ( Base ‘ 𝑟 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑟 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = ( Base ‘ 𝑟 ) ) ) ) } ) |
13 |
|
fvex |
⊢ ( LIdeal ‘ 𝑅 ) ∈ V |
14 |
13
|
rabex |
⊢ { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝐵 ) ) ) } ∈ V |
15 |
11 12 14
|
fvmpt |
⊢ ( 𝑅 ∈ Ring → ( MaxIdeal ‘ 𝑅 ) = { 𝑖 ∈ ( LIdeal ‘ 𝑅 ) ∣ ( 𝑖 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑖 ⊆ 𝑗 → ( 𝑗 = 𝑖 ∨ 𝑗 = 𝐵 ) ) ) } ) |