Description: A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mxidlval.1 | |- B = ( Base ` R ) |
|
| Assertion | mxidlidl | |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mxidlval.1 | |- B = ( Base ` R ) |
|
| 2 | 1 | ismxidl | |- ( R e. Ring -> ( M e. ( MaxIdeal ` R ) <-> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) ) |
| 3 | 2 | biimpa | |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> ( M e. ( LIdeal ` R ) /\ M =/= B /\ A. j e. ( LIdeal ` R ) ( M C_ j -> ( j = M \/ j = B ) ) ) ) |
| 4 | 3 | simp1d | |- ( ( R e. Ring /\ M e. ( MaxIdeal ` R ) ) -> M e. ( LIdeal ` R ) ) |