Description: A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011) (Revised by Thierry Arnoux, 19-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mxidlval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | mxidlidl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mxidlval.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | 1 | ismxidl | ⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ) ) ) ) |
| 3 | 2 | biimpa | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ 𝐵 ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = 𝐵 ) ) ) ) |
| 4 | 3 | simp1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |