| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssmxidl.1 |
|- B = ( Base ` R ) |
| 2 |
|
neeq1 |
|- ( p = I -> ( p =/= B <-> I =/= B ) ) |
| 3 |
|
sseq2 |
|- ( p = I -> ( I C_ p <-> I C_ I ) ) |
| 4 |
2 3
|
anbi12d |
|- ( p = I -> ( ( p =/= B /\ I C_ p ) <-> ( I =/= B /\ I C_ I ) ) ) |
| 5 |
|
simp2 |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> I e. ( LIdeal ` R ) ) |
| 6 |
|
simp3 |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> I =/= B ) |
| 7 |
|
ssidd |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> I C_ I ) |
| 8 |
6 7
|
jca |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( I =/= B /\ I C_ I ) ) |
| 9 |
4 5 8
|
elrabd |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> I e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) |
| 10 |
9
|
ne0d |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } =/= (/) ) |
| 11 |
|
eqid |
|- { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } = { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } |
| 12 |
|
simpl1 |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) ) -> R e. Ring ) |
| 13 |
|
simpl2 |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) ) -> I e. ( LIdeal ` R ) ) |
| 14 |
|
simpl3 |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) ) -> I =/= B ) |
| 15 |
|
simpr1 |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) ) -> z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) |
| 16 |
|
simpr2 |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) ) -> z =/= (/) ) |
| 17 |
|
simpr3 |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) ) -> [C.] Or z ) |
| 18 |
1 11 12 13 14 15 16 17
|
ssmxidllem |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) ) -> U. z e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) |
| 19 |
18
|
ex |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) -> U. z e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) ) |
| 20 |
19
|
alrimiv |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> A. z ( ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) -> U. z e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) ) |
| 21 |
|
fvex |
|- ( LIdeal ` R ) e. _V |
| 22 |
21
|
rabex |
|- { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } e. _V |
| 23 |
22
|
zornn0 |
|- ( ( { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } =/= (/) /\ A. z ( ( z C_ { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ z =/= (/) /\ [C.] Or z ) -> U. z e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) ) -> E. m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) |
| 24 |
10 20 23
|
syl2anc |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> E. m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) |
| 25 |
|
neeq1 |
|- ( p = m -> ( p =/= B <-> m =/= B ) ) |
| 26 |
|
sseq2 |
|- ( p = m -> ( I C_ p <-> I C_ m ) ) |
| 27 |
25 26
|
anbi12d |
|- ( p = m -> ( ( p =/= B /\ I C_ p ) <-> ( m =/= B /\ I C_ m ) ) ) |
| 28 |
27
|
elrab |
|- ( m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } <-> ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) |
| 29 |
28
|
anbi2i |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) <-> ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) ) |
| 30 |
|
simpll1 |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> R e. Ring ) |
| 31 |
|
simplrl |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> m e. ( LIdeal ` R ) ) |
| 32 |
|
simplr |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) |
| 33 |
32
|
simprld |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> m =/= B ) |
| 34 |
|
psseq2 |
|- ( j = k -> ( m C. j <-> m C. k ) ) |
| 35 |
34
|
notbid |
|- ( j = k -> ( -. m C. j <-> -. m C. k ) ) |
| 36 |
|
simp-4r |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) |
| 37 |
|
neeq1 |
|- ( p = k -> ( p =/= B <-> k =/= B ) ) |
| 38 |
|
sseq2 |
|- ( p = k -> ( I C_ p <-> I C_ k ) ) |
| 39 |
37 38
|
anbi12d |
|- ( p = k -> ( ( p =/= B /\ I C_ p ) <-> ( k =/= B /\ I C_ k ) ) ) |
| 40 |
|
simpllr |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> k e. ( LIdeal ` R ) ) |
| 41 |
|
simpr |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> -. k = B ) |
| 42 |
41
|
neqned |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> k =/= B ) |
| 43 |
|
simp-5r |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) |
| 44 |
43
|
simprrd |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> I C_ m ) |
| 45 |
|
simplr |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> m C_ k ) |
| 46 |
44 45
|
sstrd |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> I C_ k ) |
| 47 |
42 46
|
jca |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> ( k =/= B /\ I C_ k ) ) |
| 48 |
39 40 47
|
elrabd |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> k e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) |
| 49 |
35 36 48
|
rspcdva |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> -. m C. k ) |
| 50 |
|
npss |
|- ( -. m C. k <-> ( m C_ k -> m = k ) ) |
| 51 |
50
|
biimpi |
|- ( -. m C. k -> ( m C_ k -> m = k ) ) |
| 52 |
49 45 51
|
sylc |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> m = k ) |
| 53 |
52
|
equcomd |
|- ( ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) /\ -. k = B ) -> k = m ) |
| 54 |
53
|
ex |
|- ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) -> ( -. k = B -> k = m ) ) |
| 55 |
54
|
orrd |
|- ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) -> ( k = B \/ k = m ) ) |
| 56 |
55
|
orcomd |
|- ( ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) /\ m C_ k ) -> ( k = m \/ k = B ) ) |
| 57 |
56
|
ex |
|- ( ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) /\ k e. ( LIdeal ` R ) ) -> ( m C_ k -> ( k = m \/ k = B ) ) ) |
| 58 |
57
|
ralrimiva |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> A. k e. ( LIdeal ` R ) ( m C_ k -> ( k = m \/ k = B ) ) ) |
| 59 |
1
|
ismxidl |
|- ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= B /\ A. k e. ( LIdeal ` R ) ( m C_ k -> ( k = m \/ k = B ) ) ) ) ) |
| 60 |
59
|
biimpar |
|- ( ( R e. Ring /\ ( m e. ( LIdeal ` R ) /\ m =/= B /\ A. k e. ( LIdeal ` R ) ( m C_ k -> ( k = m \/ k = B ) ) ) ) -> m e. ( MaxIdeal ` R ) ) |
| 61 |
30 31 33 58 60
|
syl13anc |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> m e. ( MaxIdeal ` R ) ) |
| 62 |
32
|
simprrd |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> I C_ m ) |
| 63 |
61 62
|
jca |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ ( m e. ( LIdeal ` R ) /\ ( m =/= B /\ I C_ m ) ) ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) |
| 64 |
29 63
|
sylanb |
|- ( ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) /\ m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } ) /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) |
| 65 |
64
|
expl |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( ( m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } /\ A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j ) -> ( m e. ( MaxIdeal ` R ) /\ I C_ m ) ) ) |
| 66 |
65
|
reximdv2 |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> ( E. m e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } A. j e. { p e. ( LIdeal ` R ) | ( p =/= B /\ I C_ p ) } -. m C. j -> E. m e. ( MaxIdeal ` R ) I C_ m ) ) |
| 67 |
24 66
|
mpd |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) /\ I =/= B ) -> E. m e. ( MaxIdeal ` R ) I C_ m ) |