Step |
Hyp |
Ref |
Expression |
1 |
|
unitpidl1.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unitpidl1.2 |
⊢ 𝐾 = ( RSpan ‘ 𝑅 ) |
3 |
|
unitpidl1.3 |
⊢ 𝐼 = ( 𝐾 ‘ { 𝑋 } ) |
4 |
|
unitpidl1.4 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
5 |
|
unitpidl1.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
6 |
|
unitpidl1.6 |
⊢ ( 𝜑 → 𝑅 ∈ IDomn ) |
7 |
|
df-idom |
⊢ IDomn = ( CRing ∩ Domn ) |
8 |
6 7
|
eleqtrdi |
⊢ ( 𝜑 → 𝑅 ∈ ( CRing ∩ Domn ) ) |
9 |
8
|
elin1d |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐼 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑅 ∈ CRing ) |
11 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝐼 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑦 ∈ 𝐵 ) |
12 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐼 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
13 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝐼 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
14 |
6
|
idomringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
15 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
16 |
1 15
|
1unit |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
17 |
14 16
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
18 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐼 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝑈 ) |
19 |
13 18
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐼 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝑈 ) |
20 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
21 |
1 20 4
|
unitmulclb |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝑈 ↔ ( 𝑦 ∈ 𝑈 ∧ 𝑋 ∈ 𝑈 ) ) ) |
22 |
21
|
simplbda |
⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑦 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
23 |
10 11 12 19 22
|
syl31anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐼 = 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) → 𝑋 ∈ 𝑈 ) |
24 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → 𝑅 ∈ Ring ) |
25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → 𝑋 ∈ 𝐵 ) |
26 |
5
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐵 ) |
27 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
28 |
2 4 27
|
rspcl |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
29 |
14 26 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ‘ { 𝑋 } ) ∈ ( LIdeal ‘ 𝑅 ) ) |
30 |
3 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → 𝐼 = 𝐵 ) |
33 |
27 4 15
|
lidl1el |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ∈ 𝐼 ↔ 𝐼 = 𝐵 ) ) |
34 |
33
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝐼 = 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐼 ) |
35 |
24 31 32 34
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ 𝐼 ) |
36 |
35 3
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → ( 1r ‘ 𝑅 ) ∈ ( 𝐾 ‘ { 𝑋 } ) ) |
37 |
4 20 2
|
rspsnel |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ∈ ( 𝐾 ‘ { 𝑋 } ) ↔ ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) ) |
38 |
37
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) ∧ ( 1r ‘ 𝑅 ) ∈ ( 𝐾 ‘ { 𝑋 } ) ) → ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
39 |
24 25 36 38
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ( 1r ‘ 𝑅 ) = ( 𝑦 ( .r ‘ 𝑅 ) 𝑋 ) ) |
40 |
23 39
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝐼 = 𝐵 ) → 𝑋 ∈ 𝑈 ) |
41 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝑈 ) |
42 |
2 4
|
rspssid |
⊢ ( ( 𝑅 ∈ Ring ∧ { 𝑋 } ⊆ 𝐵 ) → { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
43 |
14 26 42
|
syl2anc |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( 𝐾 ‘ { 𝑋 } ) ) |
44 |
43 3
|
sseqtrrdi |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝐼 ) |
45 |
|
snssg |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ 𝐼 ↔ { 𝑋 } ⊆ 𝐼 ) ) |
46 |
45
|
biimpar |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ { 𝑋 } ⊆ 𝐼 ) → 𝑋 ∈ 𝐼 ) |
47 |
5 44 46
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ 𝐼 ) |
49 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝑅 ∈ Ring ) |
50 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
51 |
4 1 41 48 49 50
|
lidlunitel |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑈 ) → 𝐼 = 𝐵 ) |
52 |
40 51
|
impbida |
⊢ ( 𝜑 → ( 𝐼 = 𝐵 ↔ 𝑋 ∈ 𝑈 ) ) |