| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitpidl1.1 |
|
| 2 |
|
unitpidl1.2 |
|
| 3 |
|
unitpidl1.3 |
|
| 4 |
|
unitpidl1.4 |
|
| 5 |
|
unitpidl1.5 |
|
| 6 |
|
unitpidl1.6 |
|
| 7 |
|
df-idom |
|
| 8 |
6 7
|
eleqtrdi |
|
| 9 |
8
|
elin1d |
|
| 10 |
9
|
ad3antrrr |
|
| 11 |
|
simplr |
|
| 12 |
5
|
ad3antrrr |
|
| 13 |
|
simpr |
|
| 14 |
6
|
idomringd |
|
| 15 |
|
eqid |
|
| 16 |
1 15
|
1unit |
|
| 17 |
14 16
|
syl |
|
| 18 |
17
|
ad3antrrr |
|
| 19 |
13 18
|
eqeltrrd |
|
| 20 |
|
eqid |
|
| 21 |
1 20 4
|
unitmulclb |
|
| 22 |
21
|
simplbda |
|
| 23 |
10 11 12 19 22
|
syl31anc |
|
| 24 |
14
|
adantr |
|
| 25 |
5
|
adantr |
|
| 26 |
5
|
snssd |
|
| 27 |
|
eqid |
|
| 28 |
2 4 27
|
rspcl |
|
| 29 |
14 26 28
|
syl2anc |
|
| 30 |
3 29
|
eqeltrid |
|
| 31 |
30
|
adantr |
|
| 32 |
|
simpr |
|
| 33 |
27 4 15
|
lidl1el |
|
| 34 |
33
|
biimpar |
|
| 35 |
24 31 32 34
|
syl21anc |
|
| 36 |
35 3
|
eleqtrdi |
|
| 37 |
4 20 2
|
elrspsn |
|
| 38 |
37
|
biimpa |
|
| 39 |
24 25 36 38
|
syl21anc |
|
| 40 |
23 39
|
r19.29a |
|
| 41 |
|
simpr |
|
| 42 |
2 4
|
rspssid |
|
| 43 |
14 26 42
|
syl2anc |
|
| 44 |
43 3
|
sseqtrrdi |
|
| 45 |
|
snssg |
|
| 46 |
45
|
biimpar |
|
| 47 |
5 44 46
|
syl2anc |
|
| 48 |
47
|
adantr |
|
| 49 |
14
|
adantr |
|
| 50 |
30
|
adantr |
|
| 51 |
4 1 41 48 49 50
|
lidlunitel |
|
| 52 |
40 51
|
impbida |
|