Metamath Proof Explorer


Theorem unitpidl1

Description: The ideal I generated by an element X of an integral domain R is the unit ideal B iff X is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses unitpidl1.1 U=UnitR
unitpidl1.2 K=RSpanR
unitpidl1.3 I=KX
unitpidl1.4 B=BaseR
unitpidl1.5 φXB
unitpidl1.6 φRIDomn
Assertion unitpidl1 φI=BXU

Proof

Step Hyp Ref Expression
1 unitpidl1.1 U=UnitR
2 unitpidl1.2 K=RSpanR
3 unitpidl1.3 I=KX
4 unitpidl1.4 B=BaseR
5 unitpidl1.5 φXB
6 unitpidl1.6 φRIDomn
7 df-idom IDomn=CRingDomn
8 6 7 eleqtrdi φRCRingDomn
9 8 elin1d φRCRing
10 9 ad3antrrr φI=ByB1R=yRXRCRing
11 simplr φI=ByB1R=yRXyB
12 5 ad3antrrr φI=ByB1R=yRXXB
13 simpr φI=ByB1R=yRX1R=yRX
14 6 idomringd φRRing
15 eqid 1R=1R
16 1 15 1unit RRing1RU
17 14 16 syl φ1RU
18 17 ad3antrrr φI=ByB1R=yRX1RU
19 13 18 eqeltrrd φI=ByB1R=yRXyRXU
20 eqid R=R
21 1 20 4 unitmulclb RCRingyBXByRXUyUXU
22 21 simplbda RCRingyBXByRXUXU
23 10 11 12 19 22 syl31anc φI=ByB1R=yRXXU
24 14 adantr φI=BRRing
25 5 adantr φI=BXB
26 5 snssd φXB
27 eqid LIdealR=LIdealR
28 2 4 27 rspcl RRingXBKXLIdealR
29 14 26 28 syl2anc φKXLIdealR
30 3 29 eqeltrid φILIdealR
31 30 adantr φI=BILIdealR
32 simpr φI=BI=B
33 27 4 15 lidl1el RRingILIdealR1RII=B
34 33 biimpar RRingILIdealRI=B1RI
35 24 31 32 34 syl21anc φI=B1RI
36 35 3 eleqtrdi φI=B1RKX
37 4 20 2 rspsnel RRingXB1RKXyB1R=yRX
38 37 biimpa RRingXB1RKXyB1R=yRX
39 24 25 36 38 syl21anc φI=ByB1R=yRX
40 23 39 r19.29a φI=BXU
41 simpr φXUXU
42 2 4 rspssid RRingXBXKX
43 14 26 42 syl2anc φXKX
44 43 3 sseqtrrdi φXI
45 snssg XBXIXI
46 45 biimpar XBXIXI
47 5 44 46 syl2anc φXI
48 47 adantr φXUXI
49 14 adantr φXURRing
50 30 adantr φXUILIdealR
51 4 1 41 48 49 50 lidlunitel φXUI=B
52 40 51 impbida φI=BXU