Description: The ideal I generated by an element X of an integral domain R is the unit ideal B iff X is a ring unit. (Contributed by Thierry Arnoux, 22-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unitpidl1.1 | |
|
unitpidl1.2 | |
||
unitpidl1.3 | |
||
unitpidl1.4 | |
||
unitpidl1.5 | |
||
unitpidl1.6 | |
||
Assertion | unitpidl1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitpidl1.1 | |
|
2 | unitpidl1.2 | |
|
3 | unitpidl1.3 | |
|
4 | unitpidl1.4 | |
|
5 | unitpidl1.5 | |
|
6 | unitpidl1.6 | |
|
7 | df-idom | |
|
8 | 6 7 | eleqtrdi | |
9 | 8 | elin1d | |
10 | 9 | ad3antrrr | |
11 | simplr | |
|
12 | 5 | ad3antrrr | |
13 | simpr | |
|
14 | 6 | idomringd | |
15 | eqid | |
|
16 | 1 15 | 1unit | |
17 | 14 16 | syl | |
18 | 17 | ad3antrrr | |
19 | 13 18 | eqeltrrd | |
20 | eqid | |
|
21 | 1 20 4 | unitmulclb | |
22 | 21 | simplbda | |
23 | 10 11 12 19 22 | syl31anc | |
24 | 14 | adantr | |
25 | 5 | adantr | |
26 | 5 | snssd | |
27 | eqid | |
|
28 | 2 4 27 | rspcl | |
29 | 14 26 28 | syl2anc | |
30 | 3 29 | eqeltrid | |
31 | 30 | adantr | |
32 | simpr | |
|
33 | 27 4 15 | lidl1el | |
34 | 33 | biimpar | |
35 | 24 31 32 34 | syl21anc | |
36 | 35 3 | eleqtrdi | |
37 | 4 20 2 | rspsnel | |
38 | 37 | biimpa | |
39 | 24 25 36 38 | syl21anc | |
40 | 23 39 | r19.29a | |
41 | simpr | |
|
42 | 2 4 | rspssid | |
43 | 14 26 42 | syl2anc | |
44 | 43 3 | sseqtrrdi | |
45 | snssg | |
|
46 | 45 | biimpar | |
47 | 5 44 46 | syl2anc | |
48 | 47 | adantr | |
49 | 14 | adantr | |
50 | 30 | adantr | |
51 | 4 1 41 48 49 50 | lidlunitel | |
52 | 40 51 | impbida | |