Metamath Proof Explorer


Theorem lidlunitel

Description: If an ideal I contains a unit J , then it is the whole ring. (Contributed by Thierry Arnoux, 19-Mar-2025)

Ref Expression
Hypotheses lidlunitel.1 B=BaseR
lidlunitel.2 U=UnitR
lidlunitel.3 φJU
lidlunitel.4 φJI
lidlunitel.5 φRRing
lidlunitel.6 φILIdealR
Assertion lidlunitel φI=B

Proof

Step Hyp Ref Expression
1 lidlunitel.1 B=BaseR
2 lidlunitel.2 U=UnitR
3 lidlunitel.3 φJU
4 lidlunitel.4 φJI
5 lidlunitel.5 φRRing
6 lidlunitel.6 φILIdealR
7 eqid invrR=invrR
8 eqid R=R
9 eqid 1R=1R
10 2 7 8 9 unitlinv RRingJUinvrRJRJ=1R
11 5 3 10 syl2anc φinvrRJRJ=1R
12 1 2 unitss UB
13 2 7 unitinvcl RRingJUinvrRJU
14 5 3 13 syl2anc φinvrRJU
15 12 14 sselid φinvrRJB
16 eqid LIdealR=LIdealR
17 16 1 8 lidlmcl RRingILIdealRinvrRJBJIinvrRJRJI
18 5 6 15 4 17 syl22anc φinvrRJRJI
19 11 18 eqeltrrd φ1RI
20 16 1 9 lidl1el RRingILIdealR1RII=B
21 20 biimpa RRingILIdealR1RII=B
22 5 6 19 21 syl21anc φI=B