| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlunitel.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
lidlunitel.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
lidlunitel.3 |
⊢ ( 𝜑 → 𝐽 ∈ 𝑈 ) |
| 4 |
|
lidlunitel.4 |
⊢ ( 𝜑 → 𝐽 ∈ 𝐼 ) |
| 5 |
|
lidlunitel.5 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
lidlunitel.6 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
| 7 |
|
eqid |
⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) |
| 8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 10 |
2 7 8 9
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝐽 ) = ( 1r ‘ 𝑅 ) ) |
| 11 |
5 3 10
|
syl2anc |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝐽 ) = ( 1r ‘ 𝑅 ) ) |
| 12 |
1 2
|
unitss |
⊢ 𝑈 ⊆ 𝐵 |
| 13 |
2 7
|
unitinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ 𝑈 ) → ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ∈ 𝑈 ) |
| 14 |
5 3 13
|
syl2anc |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ∈ 𝑈 ) |
| 15 |
12 14
|
sselid |
⊢ ( 𝜑 → ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ∈ 𝐵 ) |
| 16 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
| 17 |
16 1 8
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ∈ 𝐵 ∧ 𝐽 ∈ 𝐼 ) ) → ( ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝐽 ) ∈ 𝐼 ) |
| 18 |
5 6 15 4 17
|
syl22anc |
⊢ ( 𝜑 → ( ( ( invr ‘ 𝑅 ) ‘ 𝐽 ) ( .r ‘ 𝑅 ) 𝐽 ) ∈ 𝐼 ) |
| 19 |
11 18
|
eqeltrrd |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ 𝐼 ) |
| 20 |
16 1 9
|
lidl1el |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ∈ 𝐼 ↔ 𝐼 = 𝐵 ) ) |
| 21 |
20
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐼 ) → 𝐼 = 𝐵 ) |
| 22 |
5 6 19 21
|
syl21anc |
⊢ ( 𝜑 → 𝐼 = 𝐵 ) |