| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlunitel.1 |
|- B = ( Base ` R ) |
| 2 |
|
lidlunitel.2 |
|- U = ( Unit ` R ) |
| 3 |
|
lidlunitel.3 |
|- ( ph -> J e. U ) |
| 4 |
|
lidlunitel.4 |
|- ( ph -> J e. I ) |
| 5 |
|
lidlunitel.5 |
|- ( ph -> R e. Ring ) |
| 6 |
|
lidlunitel.6 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 7 |
|
eqid |
|- ( invr ` R ) = ( invr ` R ) |
| 8 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 9 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 10 |
2 7 8 9
|
unitlinv |
|- ( ( R e. Ring /\ J e. U ) -> ( ( ( invr ` R ) ` J ) ( .r ` R ) J ) = ( 1r ` R ) ) |
| 11 |
5 3 10
|
syl2anc |
|- ( ph -> ( ( ( invr ` R ) ` J ) ( .r ` R ) J ) = ( 1r ` R ) ) |
| 12 |
1 2
|
unitss |
|- U C_ B |
| 13 |
2 7
|
unitinvcl |
|- ( ( R e. Ring /\ J e. U ) -> ( ( invr ` R ) ` J ) e. U ) |
| 14 |
5 3 13
|
syl2anc |
|- ( ph -> ( ( invr ` R ) ` J ) e. U ) |
| 15 |
12 14
|
sselid |
|- ( ph -> ( ( invr ` R ) ` J ) e. B ) |
| 16 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 17 |
16 1 8
|
lidlmcl |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ ( ( ( invr ` R ) ` J ) e. B /\ J e. I ) ) -> ( ( ( invr ` R ) ` J ) ( .r ` R ) J ) e. I ) |
| 18 |
5 6 15 4 17
|
syl22anc |
|- ( ph -> ( ( ( invr ` R ) ` J ) ( .r ` R ) J ) e. I ) |
| 19 |
11 18
|
eqeltrrd |
|- ( ph -> ( 1r ` R ) e. I ) |
| 20 |
16 1 9
|
lidl1el |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> ( ( 1r ` R ) e. I <-> I = B ) ) |
| 21 |
20
|
biimpa |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ ( 1r ` R ) e. I ) -> I = B ) |
| 22 |
5 6 19 21
|
syl21anc |
|- ( ph -> I = B ) |