| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unitpidl1.1 |
|- U = ( Unit ` R ) |
| 2 |
|
unitpidl1.2 |
|- K = ( RSpan ` R ) |
| 3 |
|
unitpidl1.3 |
|- I = ( K ` { X } ) |
| 4 |
|
unitpidl1.4 |
|- B = ( Base ` R ) |
| 5 |
|
unitpidl1.5 |
|- ( ph -> X e. B ) |
| 6 |
|
unitpidl1.6 |
|- ( ph -> R e. IDomn ) |
| 7 |
|
df-idom |
|- IDomn = ( CRing i^i Domn ) |
| 8 |
6 7
|
eleqtrdi |
|- ( ph -> R e. ( CRing i^i Domn ) ) |
| 9 |
8
|
elin1d |
|- ( ph -> R e. CRing ) |
| 10 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ I = B ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) X ) ) -> R e. CRing ) |
| 11 |
|
simplr |
|- ( ( ( ( ph /\ I = B ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) X ) ) -> y e. B ) |
| 12 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ I = B ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) X ) ) -> X e. B ) |
| 13 |
|
simpr |
|- ( ( ( ( ph /\ I = B ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) X ) ) -> ( 1r ` R ) = ( y ( .r ` R ) X ) ) |
| 14 |
6
|
idomringd |
|- ( ph -> R e. Ring ) |
| 15 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 16 |
1 15
|
1unit |
|- ( R e. Ring -> ( 1r ` R ) e. U ) |
| 17 |
14 16
|
syl |
|- ( ph -> ( 1r ` R ) e. U ) |
| 18 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ I = B ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) X ) ) -> ( 1r ` R ) e. U ) |
| 19 |
13 18
|
eqeltrrd |
|- ( ( ( ( ph /\ I = B ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) X ) ) -> ( y ( .r ` R ) X ) e. U ) |
| 20 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 21 |
1 20 4
|
unitmulclb |
|- ( ( R e. CRing /\ y e. B /\ X e. B ) -> ( ( y ( .r ` R ) X ) e. U <-> ( y e. U /\ X e. U ) ) ) |
| 22 |
21
|
simplbda |
|- ( ( ( R e. CRing /\ y e. B /\ X e. B ) /\ ( y ( .r ` R ) X ) e. U ) -> X e. U ) |
| 23 |
10 11 12 19 22
|
syl31anc |
|- ( ( ( ( ph /\ I = B ) /\ y e. B ) /\ ( 1r ` R ) = ( y ( .r ` R ) X ) ) -> X e. U ) |
| 24 |
14
|
adantr |
|- ( ( ph /\ I = B ) -> R e. Ring ) |
| 25 |
5
|
adantr |
|- ( ( ph /\ I = B ) -> X e. B ) |
| 26 |
5
|
snssd |
|- ( ph -> { X } C_ B ) |
| 27 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 28 |
2 4 27
|
rspcl |
|- ( ( R e. Ring /\ { X } C_ B ) -> ( K ` { X } ) e. ( LIdeal ` R ) ) |
| 29 |
14 26 28
|
syl2anc |
|- ( ph -> ( K ` { X } ) e. ( LIdeal ` R ) ) |
| 30 |
3 29
|
eqeltrid |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 31 |
30
|
adantr |
|- ( ( ph /\ I = B ) -> I e. ( LIdeal ` R ) ) |
| 32 |
|
simpr |
|- ( ( ph /\ I = B ) -> I = B ) |
| 33 |
27 4 15
|
lidl1el |
|- ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> ( ( 1r ` R ) e. I <-> I = B ) ) |
| 34 |
33
|
biimpar |
|- ( ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) /\ I = B ) -> ( 1r ` R ) e. I ) |
| 35 |
24 31 32 34
|
syl21anc |
|- ( ( ph /\ I = B ) -> ( 1r ` R ) e. I ) |
| 36 |
35 3
|
eleqtrdi |
|- ( ( ph /\ I = B ) -> ( 1r ` R ) e. ( K ` { X } ) ) |
| 37 |
4 20 2
|
elrspsn |
|- ( ( R e. Ring /\ X e. B ) -> ( ( 1r ` R ) e. ( K ` { X } ) <-> E. y e. B ( 1r ` R ) = ( y ( .r ` R ) X ) ) ) |
| 38 |
37
|
biimpa |
|- ( ( ( R e. Ring /\ X e. B ) /\ ( 1r ` R ) e. ( K ` { X } ) ) -> E. y e. B ( 1r ` R ) = ( y ( .r ` R ) X ) ) |
| 39 |
24 25 36 38
|
syl21anc |
|- ( ( ph /\ I = B ) -> E. y e. B ( 1r ` R ) = ( y ( .r ` R ) X ) ) |
| 40 |
23 39
|
r19.29a |
|- ( ( ph /\ I = B ) -> X e. U ) |
| 41 |
|
simpr |
|- ( ( ph /\ X e. U ) -> X e. U ) |
| 42 |
2 4
|
rspssid |
|- ( ( R e. Ring /\ { X } C_ B ) -> { X } C_ ( K ` { X } ) ) |
| 43 |
14 26 42
|
syl2anc |
|- ( ph -> { X } C_ ( K ` { X } ) ) |
| 44 |
43 3
|
sseqtrrdi |
|- ( ph -> { X } C_ I ) |
| 45 |
|
snssg |
|- ( X e. B -> ( X e. I <-> { X } C_ I ) ) |
| 46 |
45
|
biimpar |
|- ( ( X e. B /\ { X } C_ I ) -> X e. I ) |
| 47 |
5 44 46
|
syl2anc |
|- ( ph -> X e. I ) |
| 48 |
47
|
adantr |
|- ( ( ph /\ X e. U ) -> X e. I ) |
| 49 |
14
|
adantr |
|- ( ( ph /\ X e. U ) -> R e. Ring ) |
| 50 |
30
|
adantr |
|- ( ( ph /\ X e. U ) -> I e. ( LIdeal ` R ) ) |
| 51 |
4 1 41 48 49 50
|
lidlunitel |
|- ( ( ph /\ X e. U ) -> I = B ) |
| 52 |
40 51
|
impbida |
|- ( ph -> ( I = B <-> X e. U ) ) |