Step |
Hyp |
Ref |
Expression |
1 |
|
rhmqusker.1 |
|- .0. = ( 0g ` H ) |
2 |
|
rhmqusker.f |
|- ( ph -> F e. ( G RingHom H ) ) |
3 |
|
rhmqusker.k |
|- K = ( `' F " { .0. } ) |
4 |
|
rhmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
5 |
|
rhmquskerlem.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
rhmquskerlem.2 |
|- ( ph -> G e. CRing ) |
7 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
8 |
|
eqid |
|- ( 1r ` Q ) = ( 1r ` Q ) |
9 |
|
eqid |
|- ( 1r ` H ) = ( 1r ` H ) |
10 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
11 |
|
eqid |
|- ( .r ` H ) = ( .r ` H ) |
12 |
|
rhmrcl1 |
|- ( F e. ( G RingHom H ) -> G e. Ring ) |
13 |
2 12
|
syl |
|- ( ph -> G e. Ring ) |
14 |
|
eqid |
|- ( LIdeal ` G ) = ( LIdeal ` G ) |
15 |
14 1
|
kerlidl |
|- ( F e. ( G RingHom H ) -> ( `' F " { .0. } ) e. ( LIdeal ` G ) ) |
16 |
2 15
|
syl |
|- ( ph -> ( `' F " { .0. } ) e. ( LIdeal ` G ) ) |
17 |
3 16
|
eqeltrid |
|- ( ph -> K e. ( LIdeal ` G ) ) |
18 |
14
|
crng2idl |
|- ( G e. CRing -> ( LIdeal ` G ) = ( 2Ideal ` G ) ) |
19 |
6 18
|
syl |
|- ( ph -> ( LIdeal ` G ) = ( 2Ideal ` G ) ) |
20 |
17 19
|
eleqtrd |
|- ( ph -> K e. ( 2Ideal ` G ) ) |
21 |
|
eqid |
|- ( 2Ideal ` G ) = ( 2Ideal ` G ) |
22 |
|
eqid |
|- ( 1r ` G ) = ( 1r ` G ) |
23 |
4 21 22
|
qus1 |
|- ( ( G e. Ring /\ K e. ( 2Ideal ` G ) ) -> ( Q e. Ring /\ [ ( 1r ` G ) ] ( G ~QG K ) = ( 1r ` Q ) ) ) |
24 |
13 20 23
|
syl2anc |
|- ( ph -> ( Q e. Ring /\ [ ( 1r ` G ) ] ( G ~QG K ) = ( 1r ` Q ) ) ) |
25 |
24
|
simpld |
|- ( ph -> Q e. Ring ) |
26 |
|
rhmrcl2 |
|- ( F e. ( G RingHom H ) -> H e. Ring ) |
27 |
2 26
|
syl |
|- ( ph -> H e. Ring ) |
28 |
|
rhmghm |
|- ( F e. ( G RingHom H ) -> F e. ( G GrpHom H ) ) |
29 |
2 28
|
syl |
|- ( ph -> F e. ( G GrpHom H ) ) |
30 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
31 |
30 22
|
ringidcl |
|- ( G e. Ring -> ( 1r ` G ) e. ( Base ` G ) ) |
32 |
13 31
|
syl |
|- ( ph -> ( 1r ` G ) e. ( Base ` G ) ) |
33 |
1 29 3 4 5 32
|
ghmquskerlem1 |
|- ( ph -> ( J ` [ ( 1r ` G ) ] ( G ~QG K ) ) = ( F ` ( 1r ` G ) ) ) |
34 |
24
|
simprd |
|- ( ph -> [ ( 1r ` G ) ] ( G ~QG K ) = ( 1r ` Q ) ) |
35 |
34
|
fveq2d |
|- ( ph -> ( J ` [ ( 1r ` G ) ] ( G ~QG K ) ) = ( J ` ( 1r ` Q ) ) ) |
36 |
22 9
|
rhm1 |
|- ( F e. ( G RingHom H ) -> ( F ` ( 1r ` G ) ) = ( 1r ` H ) ) |
37 |
2 36
|
syl |
|- ( ph -> ( F ` ( 1r ` G ) ) = ( 1r ` H ) ) |
38 |
33 35 37
|
3eqtr3d |
|- ( ph -> ( J ` ( 1r ` Q ) ) = ( 1r ` H ) ) |
39 |
2
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G RingHom H ) ) |
40 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
41 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
42 |
|
ovexd |
|- ( ph -> ( G ~QG K ) e. _V ) |
43 |
40 41 42 6
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
44 |
1
|
ghmker |
|- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
45 |
29 44
|
syl |
|- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
46 |
3 45
|
eqeltrid |
|- ( ph -> K e. ( NrmSGrp ` G ) ) |
47 |
|
nsgsubg |
|- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
48 |
|
eqid |
|- ( G ~QG K ) = ( G ~QG K ) |
49 |
30 48
|
eqger |
|- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
50 |
46 47 49
|
3syl |
|- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
51 |
50
|
qsss |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) C_ ~P ( Base ` G ) ) |
52 |
43 51
|
eqsstrrd |
|- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
53 |
52
|
sselda |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
54 |
53
|
elpwid |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
55 |
54
|
ad5antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r C_ ( Base ` G ) ) |
56 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. r ) |
57 |
55 56
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> x e. ( Base ` G ) ) |
58 |
52
|
sselda |
|- ( ( ph /\ s e. ( Base ` Q ) ) -> s e. ~P ( Base ` G ) ) |
59 |
58
|
elpwid |
|- ( ( ph /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
60 |
59
|
adantlr |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> s C_ ( Base ` G ) ) |
61 |
60
|
ad4antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s C_ ( Base ` G ) ) |
62 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. s ) |
63 |
61 62
|
sseldd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> y e. ( Base ` G ) ) |
64 |
|
eqid |
|- ( .r ` G ) = ( .r ` G ) |
65 |
30 64 11
|
rhmmul |
|- ( ( F e. ( G RingHom H ) /\ x e. ( Base ` G ) /\ y e. ( Base ` G ) ) -> ( F ` ( x ( .r ` G ) y ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) |
66 |
39 57 63 65
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( F ` ( x ( .r ` G ) y ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) |
67 |
50
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( G ~QG K ) Er ( Base ` G ) ) |
68 |
|
simp-6r |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( Base ` Q ) ) |
69 |
43
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
70 |
68 69
|
eleqtrrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
71 |
|
qsel |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ x e. r ) -> r = [ x ] ( G ~QG K ) ) |
72 |
67 70 56 71
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> r = [ x ] ( G ~QG K ) ) |
73 |
|
simp-5r |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( Base ` Q ) ) |
74 |
73 69
|
eleqtrrd |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
75 |
|
qsel |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ s e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ y e. s ) -> s = [ y ] ( G ~QG K ) ) |
76 |
67 74 62 75
|
syl3anc |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> s = [ y ] ( G ~QG K ) ) |
77 |
72 76
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( r ( .r ` Q ) s ) = ( [ x ] ( G ~QG K ) ( .r ` Q ) [ y ] ( G ~QG K ) ) ) |
78 |
6
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. CRing ) |
79 |
17
|
ad6antr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> K e. ( LIdeal ` G ) ) |
80 |
4 30 64 10 78 79 57 63
|
qusmul |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( [ x ] ( G ~QG K ) ( .r ` Q ) [ y ] ( G ~QG K ) ) = [ ( x ( .r ` G ) y ) ] ( G ~QG K ) ) |
81 |
77 80
|
eqtr2d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> [ ( x ( .r ` G ) y ) ] ( G ~QG K ) = ( r ( .r ` Q ) s ) ) |
82 |
81
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( .r ` G ) y ) ] ( G ~QG K ) ) = ( J ` ( r ( .r ` Q ) s ) ) ) |
83 |
39 28
|
syl |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> F e. ( G GrpHom H ) ) |
84 |
39 12
|
syl |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> G e. Ring ) |
85 |
30 64 84 57 63
|
ringcld |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( x ( .r ` G ) y ) e. ( Base ` G ) ) |
86 |
1 83 3 4 5 85
|
ghmquskerlem1 |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` [ ( x ( .r ` G ) y ) ] ( G ~QG K ) ) = ( F ` ( x ( .r ` G ) y ) ) ) |
87 |
82 86
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( F ` ( x ( .r ` G ) y ) ) ) |
88 |
|
simpllr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` r ) = ( F ` x ) ) |
89 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` s ) = ( F ` y ) ) |
90 |
88 89
|
oveq12d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( ( J ` r ) ( .r ` H ) ( J ` s ) ) = ( ( F ` x ) ( .r ` H ) ( F ` y ) ) ) |
91 |
66 87 90
|
3eqtr4d |
|- ( ( ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ y e. s ) /\ ( J ` s ) = ( F ` y ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
92 |
29
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F e. ( G GrpHom H ) ) |
93 |
|
simpllr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> s e. ( Base ` Q ) ) |
94 |
1 92 3 4 5 93
|
ghmquskerlem2 |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> E. y e. s ( J ` s ) = ( F ` y ) ) |
95 |
91 94
|
r19.29a |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
96 |
29
|
ad2antrr |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
97 |
|
simplr |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
98 |
1 96 3 4 5 97
|
ghmquskerlem2 |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
99 |
95 98
|
r19.29a |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ s e. ( Base ` Q ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
100 |
99
|
anasss |
|- ( ( ph /\ ( r e. ( Base ` Q ) /\ s e. ( Base ` Q ) ) ) -> ( J ` ( r ( .r ` Q ) s ) ) = ( ( J ` r ) ( .r ` H ) ( J ` s ) ) ) |
101 |
1 29 3 4 5
|
ghmquskerlem3 |
|- ( ph -> J e. ( Q GrpHom H ) ) |
102 |
7 8 9 10 11 25 27 38 100 101
|
isrhm2d |
|- ( ph -> J e. ( Q RingHom H ) ) |