Metamath Proof Explorer


Theorem ghmquskerlem1

Description: Lemma for ghmqusker (Contributed by Thierry Arnoux, 14-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1
|- .0. = ( 0g ` H )
ghmqusker.f
|- ( ph -> F e. ( G GrpHom H ) )
ghmqusker.k
|- K = ( `' F " { .0. } )
ghmqusker.q
|- Q = ( G /s ( G ~QG K ) )
ghmqusker.j
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
ghmquskerlem1.x
|- ( ph -> X e. ( Base ` G ) )
Assertion ghmquskerlem1
|- ( ph -> ( J ` [ X ] ( G ~QG K ) ) = ( F ` X ) )

Proof

Step Hyp Ref Expression
1 ghmqusker.1
 |-  .0. = ( 0g ` H )
2 ghmqusker.f
 |-  ( ph -> F e. ( G GrpHom H ) )
3 ghmqusker.k
 |-  K = ( `' F " { .0. } )
4 ghmqusker.q
 |-  Q = ( G /s ( G ~QG K ) )
5 ghmqusker.j
 |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
6 ghmquskerlem1.x
 |-  ( ph -> X e. ( Base ` G ) )
7 imaeq2
 |-  ( q = [ X ] ( G ~QG K ) -> ( F " q ) = ( F " [ X ] ( G ~QG K ) ) )
8 7 unieqd
 |-  ( q = [ X ] ( G ~QG K ) -> U. ( F " q ) = U. ( F " [ X ] ( G ~QG K ) ) )
9 ovex
 |-  ( G ~QG K ) e. _V
10 9 ecelqsi
 |-  ( X e. ( Base ` G ) -> [ X ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) )
11 6 10 syl
 |-  ( ph -> [ X ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) )
12 4 a1i
 |-  ( ph -> Q = ( G /s ( G ~QG K ) ) )
13 eqidd
 |-  ( ph -> ( Base ` G ) = ( Base ` G ) )
14 ovexd
 |-  ( ph -> ( G ~QG K ) e. _V )
15 ghmgrp1
 |-  ( F e. ( G GrpHom H ) -> G e. Grp )
16 2 15 syl
 |-  ( ph -> G e. Grp )
17 12 13 14 16 qusbas
 |-  ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) )
18 11 17 eleqtrd
 |-  ( ph -> [ X ] ( G ~QG K ) e. ( Base ` Q ) )
19 2 imaexd
 |-  ( ph -> ( F " [ X ] ( G ~QG K ) ) e. _V )
20 19 uniexd
 |-  ( ph -> U. ( F " [ X ] ( G ~QG K ) ) e. _V )
21 5 8 18 20 fvmptd3
 |-  ( ph -> ( J ` [ X ] ( G ~QG K ) ) = U. ( F " [ X ] ( G ~QG K ) ) )
22 eqid
 |-  ( Base ` G ) = ( Base ` G )
23 eqid
 |-  ( Base ` H ) = ( Base ` H )
24 22 23 ghmf
 |-  ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) )
25 2 24 syl
 |-  ( ph -> F : ( Base ` G ) --> ( Base ` H ) )
26 25 ffnd
 |-  ( ph -> F Fn ( Base ` G ) )
27 1 ghmker
 |-  ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) )
28 2 27 syl
 |-  ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) )
29 3 28 eqeltrid
 |-  ( ph -> K e. ( NrmSGrp ` G ) )
30 nsgsubg
 |-  ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) )
31 eqid
 |-  ( G ~QG K ) = ( G ~QG K )
32 22 31 eqger
 |-  ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) )
33 29 30 32 3syl
 |-  ( ph -> ( G ~QG K ) Er ( Base ` G ) )
34 33 ecss
 |-  ( ph -> [ X ] ( G ~QG K ) C_ ( Base ` G ) )
35 26 34 fvelimabd
 |-  ( ph -> ( y e. ( F " [ X ] ( G ~QG K ) ) <-> E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) )
36 simpr
 |-  ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = y )
37 2 adantr
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F e. ( G GrpHom H ) )
38 eqid
 |-  ( invg ` G ) = ( invg ` G )
39 37 15 syl
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> G e. Grp )
40 6 adantr
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> X e. ( Base ` G ) )
41 22 38 39 40 grpinvcld
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( invg ` G ) ` X ) e. ( Base ` G ) )
42 34 sselda
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> z e. ( Base ` G ) )
43 eqid
 |-  ( +g ` G ) = ( +g ` G )
44 eqid
 |-  ( +g ` H ) = ( +g ` H )
45 22 43 44 ghmlin
 |-  ( ( F e. ( G GrpHom H ) /\ ( ( invg ` G ) ` X ) e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) )
46 37 41 42 45 syl3anc
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) )
47 26 adantr
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F Fn ( Base ` G ) )
48 22 subgss
 |-  ( K e. ( SubGrp ` G ) -> K C_ ( Base ` G ) )
49 29 30 48 3syl
 |-  ( ph -> K C_ ( Base ` G ) )
50 49 adantr
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> K C_ ( Base ` G ) )
51 vex
 |-  z e. _V
52 elecg
 |-  ( ( z e. _V /\ X e. ( Base ` G ) ) -> ( z e. [ X ] ( G ~QG K ) <-> X ( G ~QG K ) z ) )
53 51 52 mpan
 |-  ( X e. ( Base ` G ) -> ( z e. [ X ] ( G ~QG K ) <-> X ( G ~QG K ) z ) )
54 53 biimpa
 |-  ( ( X e. ( Base ` G ) /\ z e. [ X ] ( G ~QG K ) ) -> X ( G ~QG K ) z )
55 6 54 sylan
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> X ( G ~QG K ) z )
56 22 38 43 31 eqgval
 |-  ( ( G e. Grp /\ K C_ ( Base ` G ) ) -> ( X ( G ~QG K ) z <-> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) ) )
57 56 biimpa
 |-  ( ( ( G e. Grp /\ K C_ ( Base ` G ) ) /\ X ( G ~QG K ) z ) -> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) )
58 57 simp3d
 |-  ( ( ( G e. Grp /\ K C_ ( Base ` G ) ) /\ X ( G ~QG K ) z ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K )
59 39 50 55 58 syl21anc
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K )
60 59 3 eleqtrdi
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) )
61 fniniseg
 |-  ( F Fn ( Base ` G ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) <-> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) )
62 61 biimpa
 |-  ( ( F Fn ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) )
63 47 60 62 syl2anc
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) )
64 63 simprd
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. )
65 46 64 eqtr3d
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = .0. )
66 65 oveq2d
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) .0. ) )
67 eqid
 |-  ( invg ` H ) = ( invg ` H )
68 22 38 67 ghminv
 |-  ( ( F e. ( G GrpHom H ) /\ X e. ( Base ` G ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) )
69 37 40 68 syl2anc
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) )
70 69 oveq1d
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) )
71 70 oveq2d
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) )
72 ghmgrp2
 |-  ( F e. ( G GrpHom H ) -> H e. Grp )
73 37 72 syl
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> H e. Grp )
74 37 24 syl
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F : ( Base ` G ) --> ( Base ` H ) )
75 74 40 ffvelcdmd
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` X ) e. ( Base ` H ) )
76 74 42 ffvelcdmd
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` z ) e. ( Base ` H ) )
77 23 44 67 grpasscan1
 |-  ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) )
78 73 75 76 77 syl3anc
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) )
79 71 78 eqtrd
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) )
80 23 44 1 grprid
 |-  ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) )
81 73 75 80 syl2anc
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) )
82 66 79 81 3eqtr3d
 |-  ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` z ) = ( F ` X ) )
83 82 adantr
 |-  ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = ( F ` X ) )
84 36 83 eqtr3d
 |-  ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> y = ( F ` X ) )
85 84 r19.29an
 |-  ( ( ph /\ E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) -> y = ( F ` X ) )
86 ecref
 |-  ( ( ( G ~QG K ) Er ( Base ` G ) /\ X e. ( Base ` G ) ) -> X e. [ X ] ( G ~QG K ) )
87 33 6 86 syl2anc
 |-  ( ph -> X e. [ X ] ( G ~QG K ) )
88 87 adantr
 |-  ( ( ph /\ y = ( F ` X ) ) -> X e. [ X ] ( G ~QG K ) )
89 fveqeq2
 |-  ( z = X -> ( ( F ` z ) = y <-> ( F ` X ) = y ) )
90 89 adantl
 |-  ( ( ( ph /\ y = ( F ` X ) ) /\ z = X ) -> ( ( F ` z ) = y <-> ( F ` X ) = y ) )
91 simpr
 |-  ( ( ph /\ y = ( F ` X ) ) -> y = ( F ` X ) )
92 91 eqcomd
 |-  ( ( ph /\ y = ( F ` X ) ) -> ( F ` X ) = y )
93 88 90 92 rspcedvd
 |-  ( ( ph /\ y = ( F ` X ) ) -> E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y )
94 85 93 impbida
 |-  ( ph -> ( E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y <-> y = ( F ` X ) ) )
95 velsn
 |-  ( y e. { ( F ` X ) } <-> y = ( F ` X ) )
96 94 95 bitr4di
 |-  ( ph -> ( E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y <-> y e. { ( F ` X ) } ) )
97 35 96 bitrd
 |-  ( ph -> ( y e. ( F " [ X ] ( G ~QG K ) ) <-> y e. { ( F ` X ) } ) )
98 97 eqrdv
 |-  ( ph -> ( F " [ X ] ( G ~QG K ) ) = { ( F ` X ) } )
99 98 unieqd
 |-  ( ph -> U. ( F " [ X ] ( G ~QG K ) ) = U. { ( F ` X ) } )
100 fvex
 |-  ( F ` X ) e. _V
101 100 unisn
 |-  U. { ( F ` X ) } = ( F ` X )
102 99 101 eqtrdi
 |-  ( ph -> U. ( F " [ X ] ( G ~QG K ) ) = ( F ` X ) )
103 21 102 eqtrd
 |-  ( ph -> ( J ` [ X ] ( G ~QG K ) ) = ( F ` X ) )