| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmqusker.1 |
|- .0. = ( 0g ` H ) |
| 2 |
|
ghmqusker.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
| 3 |
|
ghmqusker.k |
|- K = ( `' F " { .0. } ) |
| 4 |
|
ghmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
| 5 |
|
ghmqusker.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
| 6 |
|
ghmquskerlem1.x |
|- ( ph -> X e. ( Base ` G ) ) |
| 7 |
|
imaeq2 |
|- ( q = [ X ] ( G ~QG K ) -> ( F " q ) = ( F " [ X ] ( G ~QG K ) ) ) |
| 8 |
7
|
unieqd |
|- ( q = [ X ] ( G ~QG K ) -> U. ( F " q ) = U. ( F " [ X ] ( G ~QG K ) ) ) |
| 9 |
|
ovex |
|- ( G ~QG K ) e. _V |
| 10 |
9
|
ecelqsi |
|- ( X e. ( Base ` G ) -> [ X ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 11 |
6 10
|
syl |
|- ( ph -> [ X ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
| 12 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
| 13 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
| 14 |
|
ovexd |
|- ( ph -> ( G ~QG K ) e. _V ) |
| 15 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
| 16 |
2 15
|
syl |
|- ( ph -> G e. Grp ) |
| 17 |
12 13 14 16
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
| 18 |
11 17
|
eleqtrd |
|- ( ph -> [ X ] ( G ~QG K ) e. ( Base ` Q ) ) |
| 19 |
2
|
imaexd |
|- ( ph -> ( F " [ X ] ( G ~QG K ) ) e. _V ) |
| 20 |
19
|
uniexd |
|- ( ph -> U. ( F " [ X ] ( G ~QG K ) ) e. _V ) |
| 21 |
5 8 18 20
|
fvmptd3 |
|- ( ph -> ( J ` [ X ] ( G ~QG K ) ) = U. ( F " [ X ] ( G ~QG K ) ) ) |
| 22 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 23 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 24 |
22 23
|
ghmf |
|- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 25 |
2 24
|
syl |
|- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 26 |
25
|
ffnd |
|- ( ph -> F Fn ( Base ` G ) ) |
| 27 |
1
|
ghmker |
|- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 28 |
2 27
|
syl |
|- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
| 29 |
3 28
|
eqeltrid |
|- ( ph -> K e. ( NrmSGrp ` G ) ) |
| 30 |
|
nsgsubg |
|- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
| 31 |
|
eqid |
|- ( G ~QG K ) = ( G ~QG K ) |
| 32 |
22 31
|
eqger |
|- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
| 33 |
29 30 32
|
3syl |
|- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
| 34 |
33
|
ecss |
|- ( ph -> [ X ] ( G ~QG K ) C_ ( Base ` G ) ) |
| 35 |
26 34
|
fvelimabd |
|- ( ph -> ( y e. ( F " [ X ] ( G ~QG K ) ) <-> E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) ) |
| 36 |
|
simpr |
|- ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = y ) |
| 37 |
2
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F e. ( G GrpHom H ) ) |
| 38 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 39 |
37 15
|
syl |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> G e. Grp ) |
| 40 |
6
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> X e. ( Base ` G ) ) |
| 41 |
22 38 39 40
|
grpinvcld |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( invg ` G ) ` X ) e. ( Base ` G ) ) |
| 42 |
34
|
sselda |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> z e. ( Base ` G ) ) |
| 43 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 44 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 45 |
22 43 44
|
ghmlin |
|- ( ( F e. ( G GrpHom H ) /\ ( ( invg ` G ) ` X ) e. ( Base ` G ) /\ z e. ( Base ` G ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
| 46 |
37 41 42 45
|
syl3anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
| 47 |
26
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F Fn ( Base ` G ) ) |
| 48 |
22
|
subgss |
|- ( K e. ( SubGrp ` G ) -> K C_ ( Base ` G ) ) |
| 49 |
29 30 48
|
3syl |
|- ( ph -> K C_ ( Base ` G ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> K C_ ( Base ` G ) ) |
| 51 |
|
vex |
|- z e. _V |
| 52 |
|
elecg |
|- ( ( z e. _V /\ X e. ( Base ` G ) ) -> ( z e. [ X ] ( G ~QG K ) <-> X ( G ~QG K ) z ) ) |
| 53 |
51 52
|
mpan |
|- ( X e. ( Base ` G ) -> ( z e. [ X ] ( G ~QG K ) <-> X ( G ~QG K ) z ) ) |
| 54 |
53
|
biimpa |
|- ( ( X e. ( Base ` G ) /\ z e. [ X ] ( G ~QG K ) ) -> X ( G ~QG K ) z ) |
| 55 |
6 54
|
sylan |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> X ( G ~QG K ) z ) |
| 56 |
22 38 43 31
|
eqgval |
|- ( ( G e. Grp /\ K C_ ( Base ` G ) ) -> ( X ( G ~QG K ) z <-> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) ) ) |
| 57 |
56
|
biimpa |
|- ( ( ( G e. Grp /\ K C_ ( Base ` G ) ) /\ X ( G ~QG K ) z ) -> ( X e. ( Base ` G ) /\ z e. ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) ) |
| 58 |
57
|
simp3d |
|- ( ( ( G e. Grp /\ K C_ ( Base ` G ) ) /\ X ( G ~QG K ) z ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) |
| 59 |
39 50 55 58
|
syl21anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. K ) |
| 60 |
59 3
|
eleqtrdi |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) |
| 61 |
|
fniniseg |
|- ( F Fn ( Base ` G ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) <-> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) ) |
| 62 |
61
|
biimpa |
|- ( ( F Fn ( Base ` G ) /\ ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( `' F " { .0. } ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) |
| 63 |
47 60 62
|
syl2anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) e. ( Base ` G ) /\ ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) ) |
| 64 |
63
|
simprd |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( ( invg ` G ) ` X ) ( +g ` G ) z ) ) = .0. ) |
| 65 |
46 64
|
eqtr3d |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = .0. ) |
| 66 |
65
|
oveq2d |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) .0. ) ) |
| 67 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
| 68 |
22 38 67
|
ghminv |
|- ( ( F e. ( G GrpHom H ) /\ X e. ( Base ` G ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) |
| 69 |
37 40 68
|
syl2anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` ( ( invg ` G ) ` X ) ) = ( ( invg ` H ) ` ( F ` X ) ) ) |
| 70 |
69
|
oveq1d |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) = ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) |
| 71 |
70
|
oveq2d |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) ) |
| 72 |
|
ghmgrp2 |
|- ( F e. ( G GrpHom H ) -> H e. Grp ) |
| 73 |
37 72
|
syl |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> H e. Grp ) |
| 74 |
37 24
|
syl |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
| 75 |
74 40
|
ffvelcdmd |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` X ) e. ( Base ` H ) ) |
| 76 |
74 42
|
ffvelcdmd |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` z ) e. ( Base ` H ) ) |
| 77 |
23 44 67
|
grpasscan1 |
|- ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) /\ ( F ` z ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
| 78 |
73 75 76 77
|
syl3anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( ( invg ` H ) ` ( F ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
| 79 |
71 78
|
eqtrd |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) ( ( F ` ( ( invg ` G ) ` X ) ) ( +g ` H ) ( F ` z ) ) ) = ( F ` z ) ) |
| 80 |
23 44 1
|
grprid |
|- ( ( H e. Grp /\ ( F ` X ) e. ( Base ` H ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) ) |
| 81 |
73 75 80
|
syl2anc |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( ( F ` X ) ( +g ` H ) .0. ) = ( F ` X ) ) |
| 82 |
66 79 81
|
3eqtr3d |
|- ( ( ph /\ z e. [ X ] ( G ~QG K ) ) -> ( F ` z ) = ( F ` X ) ) |
| 83 |
82
|
adantr |
|- ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> ( F ` z ) = ( F ` X ) ) |
| 84 |
36 83
|
eqtr3d |
|- ( ( ( ph /\ z e. [ X ] ( G ~QG K ) ) /\ ( F ` z ) = y ) -> y = ( F ` X ) ) |
| 85 |
84
|
r19.29an |
|- ( ( ph /\ E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) -> y = ( F ` X ) ) |
| 86 |
|
ecref |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ X e. ( Base ` G ) ) -> X e. [ X ] ( G ~QG K ) ) |
| 87 |
33 6 86
|
syl2anc |
|- ( ph -> X e. [ X ] ( G ~QG K ) ) |
| 88 |
87
|
adantr |
|- ( ( ph /\ y = ( F ` X ) ) -> X e. [ X ] ( G ~QG K ) ) |
| 89 |
|
fveqeq2 |
|- ( z = X -> ( ( F ` z ) = y <-> ( F ` X ) = y ) ) |
| 90 |
89
|
adantl |
|- ( ( ( ph /\ y = ( F ` X ) ) /\ z = X ) -> ( ( F ` z ) = y <-> ( F ` X ) = y ) ) |
| 91 |
|
simpr |
|- ( ( ph /\ y = ( F ` X ) ) -> y = ( F ` X ) ) |
| 92 |
91
|
eqcomd |
|- ( ( ph /\ y = ( F ` X ) ) -> ( F ` X ) = y ) |
| 93 |
88 90 92
|
rspcedvd |
|- ( ( ph /\ y = ( F ` X ) ) -> E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y ) |
| 94 |
85 93
|
impbida |
|- ( ph -> ( E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y <-> y = ( F ` X ) ) ) |
| 95 |
|
velsn |
|- ( y e. { ( F ` X ) } <-> y = ( F ` X ) ) |
| 96 |
94 95
|
bitr4di |
|- ( ph -> ( E. z e. [ X ] ( G ~QG K ) ( F ` z ) = y <-> y e. { ( F ` X ) } ) ) |
| 97 |
35 96
|
bitrd |
|- ( ph -> ( y e. ( F " [ X ] ( G ~QG K ) ) <-> y e. { ( F ` X ) } ) ) |
| 98 |
97
|
eqrdv |
|- ( ph -> ( F " [ X ] ( G ~QG K ) ) = { ( F ` X ) } ) |
| 99 |
98
|
unieqd |
|- ( ph -> U. ( F " [ X ] ( G ~QG K ) ) = U. { ( F ` X ) } ) |
| 100 |
|
fvex |
|- ( F ` X ) e. _V |
| 101 |
100
|
unisn |
|- U. { ( F ` X ) } = ( F ` X ) |
| 102 |
99 101
|
eqtrdi |
|- ( ph -> U. ( F " [ X ] ( G ~QG K ) ) = ( F ` X ) ) |
| 103 |
21 102
|
eqtrd |
|- ( ph -> ( J ` [ X ] ( G ~QG K ) ) = ( F ` X ) ) |