Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
|- .0. = ( 0g ` H ) |
2 |
|
ghmqusker.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
3 |
|
ghmqusker.k |
|- K = ( `' F " { .0. } ) |
4 |
|
ghmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
5 |
|
ghmqusker.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
ghmquskerco.b |
|- B = ( Base ` G ) |
7 |
|
ghmquskerco.l |
|- L = ( x e. B |-> [ x ] ( G ~QG K ) ) |
8 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
9 |
6 8
|
ghmf |
|- ( F e. ( G GrpHom H ) -> F : B --> ( Base ` H ) ) |
10 |
2 9
|
syl |
|- ( ph -> F : B --> ( Base ` H ) ) |
11 |
10
|
ffnd |
|- ( ph -> F Fn B ) |
12 |
2
|
adantr |
|- ( ( ph /\ x e. B ) -> F e. ( G GrpHom H ) ) |
13 |
12
|
imaexd |
|- ( ( ph /\ x e. B ) -> ( F " [ x ] ( G ~QG K ) ) e. _V ) |
14 |
13
|
uniexd |
|- ( ( ph /\ x e. B ) -> U. ( F " [ x ] ( G ~QG K ) ) e. _V ) |
15 |
14
|
ralrimiva |
|- ( ph -> A. x e. B U. ( F " [ x ] ( G ~QG K ) ) e. _V ) |
16 |
|
eqid |
|- ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) = ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) |
17 |
16
|
fnmpt |
|- ( A. x e. B U. ( F " [ x ] ( G ~QG K ) ) e. _V -> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B ) |
18 |
15 17
|
syl |
|- ( ph -> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B ) |
19 |
|
ovex |
|- ( G ~QG K ) e. _V |
20 |
19
|
ecelqsi |
|- ( x e. B -> [ x ] ( G ~QG K ) e. ( B /. ( G ~QG K ) ) ) |
21 |
20
|
adantl |
|- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. ( B /. ( G ~QG K ) ) ) |
22 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
23 |
6
|
a1i |
|- ( ph -> B = ( Base ` G ) ) |
24 |
|
ovexd |
|- ( ph -> ( G ~QG K ) e. _V ) |
25 |
|
reldmghm |
|- Rel dom GrpHom |
26 |
25
|
ovrcl |
|- ( F e. ( G GrpHom H ) -> ( G e. _V /\ H e. _V ) ) |
27 |
26
|
simpld |
|- ( F e. ( G GrpHom H ) -> G e. _V ) |
28 |
2 27
|
syl |
|- ( ph -> G e. _V ) |
29 |
22 23 24 28
|
qusbas |
|- ( ph -> ( B /. ( G ~QG K ) ) = ( Base ` Q ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ x e. B ) -> ( B /. ( G ~QG K ) ) = ( Base ` Q ) ) |
31 |
21 30
|
eleqtrd |
|- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. ( Base ` Q ) ) |
32 |
7
|
a1i |
|- ( ph -> L = ( x e. B |-> [ x ] ( G ~QG K ) ) ) |
33 |
5
|
a1i |
|- ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) |
34 |
|
imaeq2 |
|- ( q = [ x ] ( G ~QG K ) -> ( F " q ) = ( F " [ x ] ( G ~QG K ) ) ) |
35 |
34
|
unieqd |
|- ( q = [ x ] ( G ~QG K ) -> U. ( F " q ) = U. ( F " [ x ] ( G ~QG K ) ) ) |
36 |
31 32 33 35
|
fmptco |
|- ( ph -> ( J o. L ) = ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) ) |
37 |
36
|
fneq1d |
|- ( ph -> ( ( J o. L ) Fn B <-> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B ) ) |
38 |
18 37
|
mpbird |
|- ( ph -> ( J o. L ) Fn B ) |
39 |
|
ecexg |
|- ( ( G ~QG K ) e. _V -> [ x ] ( G ~QG K ) e. _V ) |
40 |
19 39
|
ax-mp |
|- [ x ] ( G ~QG K ) e. _V |
41 |
40 7
|
fnmpti |
|- L Fn B |
42 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
43 |
|
fvco2 |
|- ( ( L Fn B /\ x e. B ) -> ( ( J o. L ) ` x ) = ( J ` ( L ` x ) ) ) |
44 |
41 42 43
|
sylancr |
|- ( ( ph /\ x e. B ) -> ( ( J o. L ) ` x ) = ( J ` ( L ` x ) ) ) |
45 |
40
|
a1i |
|- ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. _V ) |
46 |
32 45
|
fvmpt2d |
|- ( ( ph /\ x e. B ) -> ( L ` x ) = [ x ] ( G ~QG K ) ) |
47 |
46
|
fveq2d |
|- ( ( ph /\ x e. B ) -> ( J ` ( L ` x ) ) = ( J ` [ x ] ( G ~QG K ) ) ) |
48 |
42 6
|
eleqtrdi |
|- ( ( ph /\ x e. B ) -> x e. ( Base ` G ) ) |
49 |
1 12 3 4 5 48
|
ghmquskerlem1 |
|- ( ( ph /\ x e. B ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
50 |
44 47 49
|
3eqtrrd |
|- ( ( ph /\ x e. B ) -> ( F ` x ) = ( ( J o. L ) ` x ) ) |
51 |
11 38 50
|
eqfnfvd |
|- ( ph -> F = ( J o. L ) ) |