Metamath Proof Explorer


Theorem ghmquskerco

Description: In the case of theorem ghmqusker , the composition of the natural homomorphism L with the constructed homomorphism J equals the original homomorphism F . One says that F factors through Q . (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1
|- .0. = ( 0g ` H )
ghmqusker.f
|- ( ph -> F e. ( G GrpHom H ) )
ghmqusker.k
|- K = ( `' F " { .0. } )
ghmqusker.q
|- Q = ( G /s ( G ~QG K ) )
ghmqusker.j
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
ghmquskerco.b
|- B = ( Base ` G )
ghmquskerco.l
|- L = ( x e. B |-> [ x ] ( G ~QG K ) )
Assertion ghmquskerco
|- ( ph -> F = ( J o. L ) )

Proof

Step Hyp Ref Expression
1 ghmqusker.1
 |-  .0. = ( 0g ` H )
2 ghmqusker.f
 |-  ( ph -> F e. ( G GrpHom H ) )
3 ghmqusker.k
 |-  K = ( `' F " { .0. } )
4 ghmqusker.q
 |-  Q = ( G /s ( G ~QG K ) )
5 ghmqusker.j
 |-  J = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
6 ghmquskerco.b
 |-  B = ( Base ` G )
7 ghmquskerco.l
 |-  L = ( x e. B |-> [ x ] ( G ~QG K ) )
8 eqid
 |-  ( Base ` H ) = ( Base ` H )
9 6 8 ghmf
 |-  ( F e. ( G GrpHom H ) -> F : B --> ( Base ` H ) )
10 2 9 syl
 |-  ( ph -> F : B --> ( Base ` H ) )
11 10 ffnd
 |-  ( ph -> F Fn B )
12 2 adantr
 |-  ( ( ph /\ x e. B ) -> F e. ( G GrpHom H ) )
13 12 imaexd
 |-  ( ( ph /\ x e. B ) -> ( F " [ x ] ( G ~QG K ) ) e. _V )
14 13 uniexd
 |-  ( ( ph /\ x e. B ) -> U. ( F " [ x ] ( G ~QG K ) ) e. _V )
15 14 ralrimiva
 |-  ( ph -> A. x e. B U. ( F " [ x ] ( G ~QG K ) ) e. _V )
16 eqid
 |-  ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) = ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) )
17 16 fnmpt
 |-  ( A. x e. B U. ( F " [ x ] ( G ~QG K ) ) e. _V -> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B )
18 15 17 syl
 |-  ( ph -> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B )
19 ovex
 |-  ( G ~QG K ) e. _V
20 19 ecelqsi
 |-  ( x e. B -> [ x ] ( G ~QG K ) e. ( B /. ( G ~QG K ) ) )
21 20 adantl
 |-  ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. ( B /. ( G ~QG K ) ) )
22 4 a1i
 |-  ( ph -> Q = ( G /s ( G ~QG K ) ) )
23 6 a1i
 |-  ( ph -> B = ( Base ` G ) )
24 ovexd
 |-  ( ph -> ( G ~QG K ) e. _V )
25 reldmghm
 |-  Rel dom GrpHom
26 25 ovrcl
 |-  ( F e. ( G GrpHom H ) -> ( G e. _V /\ H e. _V ) )
27 26 simpld
 |-  ( F e. ( G GrpHom H ) -> G e. _V )
28 2 27 syl
 |-  ( ph -> G e. _V )
29 22 23 24 28 qusbas
 |-  ( ph -> ( B /. ( G ~QG K ) ) = ( Base ` Q ) )
30 29 adantr
 |-  ( ( ph /\ x e. B ) -> ( B /. ( G ~QG K ) ) = ( Base ` Q ) )
31 21 30 eleqtrd
 |-  ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. ( Base ` Q ) )
32 7 a1i
 |-  ( ph -> L = ( x e. B |-> [ x ] ( G ~QG K ) ) )
33 5 a1i
 |-  ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) )
34 imaeq2
 |-  ( q = [ x ] ( G ~QG K ) -> ( F " q ) = ( F " [ x ] ( G ~QG K ) ) )
35 34 unieqd
 |-  ( q = [ x ] ( G ~QG K ) -> U. ( F " q ) = U. ( F " [ x ] ( G ~QG K ) ) )
36 31 32 33 35 fmptco
 |-  ( ph -> ( J o. L ) = ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) )
37 36 fneq1d
 |-  ( ph -> ( ( J o. L ) Fn B <-> ( x e. B |-> U. ( F " [ x ] ( G ~QG K ) ) ) Fn B ) )
38 18 37 mpbird
 |-  ( ph -> ( J o. L ) Fn B )
39 ecexg
 |-  ( ( G ~QG K ) e. _V -> [ x ] ( G ~QG K ) e. _V )
40 19 39 ax-mp
 |-  [ x ] ( G ~QG K ) e. _V
41 40 7 fnmpti
 |-  L Fn B
42 simpr
 |-  ( ( ph /\ x e. B ) -> x e. B )
43 fvco2
 |-  ( ( L Fn B /\ x e. B ) -> ( ( J o. L ) ` x ) = ( J ` ( L ` x ) ) )
44 41 42 43 sylancr
 |-  ( ( ph /\ x e. B ) -> ( ( J o. L ) ` x ) = ( J ` ( L ` x ) ) )
45 40 a1i
 |-  ( ( ph /\ x e. B ) -> [ x ] ( G ~QG K ) e. _V )
46 32 45 fvmpt2d
 |-  ( ( ph /\ x e. B ) -> ( L ` x ) = [ x ] ( G ~QG K ) )
47 46 fveq2d
 |-  ( ( ph /\ x e. B ) -> ( J ` ( L ` x ) ) = ( J ` [ x ] ( G ~QG K ) ) )
48 42 6 eleqtrdi
 |-  ( ( ph /\ x e. B ) -> x e. ( Base ` G ) )
49 1 12 3 4 5 48 ghmquskerlem1
 |-  ( ( ph /\ x e. B ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) )
50 44 47 49 3eqtrrd
 |-  ( ( ph /\ x e. B ) -> ( F ` x ) = ( ( J o. L ) ` x ) )
51 11 38 50 eqfnfvd
 |-  ( ph -> F = ( J o. L ) )