Step |
Hyp |
Ref |
Expression |
1 |
|
ghmqusker.1 |
|- .0. = ( 0g ` H ) |
2 |
|
ghmqusker.f |
|- ( ph -> F e. ( G GrpHom H ) ) |
3 |
|
ghmqusker.k |
|- K = ( `' F " { .0. } ) |
4 |
|
ghmqusker.q |
|- Q = ( G /s ( G ~QG K ) ) |
5 |
|
ghmqusker.j |
|- J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
6 |
|
ghmqusker.s |
|- ( ph -> ran F = ( Base ` H ) ) |
7 |
1 2 3 4 5
|
ghmquskerlem3 |
|- ( ph -> J e. ( Q GrpHom H ) ) |
8 |
|
ghmgrp1 |
|- ( F e. ( G GrpHom H ) -> G e. Grp ) |
9 |
2 8
|
syl |
|- ( ph -> G e. Grp ) |
10 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> G e. Grp ) |
11 |
1
|
ghmker |
|- ( F e. ( G GrpHom H ) -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
12 |
2 11
|
syl |
|- ( ph -> ( `' F " { .0. } ) e. ( NrmSGrp ` G ) ) |
13 |
3 12
|
eqeltrid |
|- ( ph -> K e. ( NrmSGrp ` G ) ) |
14 |
|
nsgsubg |
|- ( K e. ( NrmSGrp ` G ) -> K e. ( SubGrp ` G ) ) |
15 |
13 14
|
syl |
|- ( ph -> K e. ( SubGrp ` G ) ) |
16 |
15
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> K e. ( SubGrp ` G ) ) |
17 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
18 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
19 |
17 18
|
ghmf |
|- ( F e. ( G GrpHom H ) -> F : ( Base ` G ) --> ( Base ` H ) ) |
20 |
2 19
|
syl |
|- ( ph -> F : ( Base ` G ) --> ( Base ` H ) ) |
21 |
20
|
ffnd |
|- ( ph -> F Fn ( Base ` G ) ) |
22 |
21
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> F Fn ( Base ` G ) ) |
23 |
22
|
adantr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> F Fn ( Base ` G ) ) |
24 |
4
|
a1i |
|- ( ph -> Q = ( G /s ( G ~QG K ) ) ) |
25 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
26 |
|
ovexd |
|- ( ph -> ( G ~QG K ) e. _V ) |
27 |
24 25 26 9
|
qusbas |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
28 |
|
eqid |
|- ( G ~QG K ) = ( G ~QG K ) |
29 |
17 28
|
eqger |
|- ( K e. ( SubGrp ` G ) -> ( G ~QG K ) Er ( Base ` G ) ) |
30 |
13 14 29
|
3syl |
|- ( ph -> ( G ~QG K ) Er ( Base ` G ) ) |
31 |
30
|
qsss |
|- ( ph -> ( ( Base ` G ) /. ( G ~QG K ) ) C_ ~P ( Base ` G ) ) |
32 |
27 31
|
eqsstrrd |
|- ( ph -> ( Base ` Q ) C_ ~P ( Base ` G ) ) |
33 |
32
|
sselda |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ~P ( Base ` G ) ) |
34 |
33
|
elpwid |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r C_ ( Base ` G ) ) |
35 |
34
|
sselda |
|- ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) -> x e. ( Base ` G ) ) |
36 |
35
|
adantr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> x e. ( Base ` G ) ) |
37 |
36
|
adantr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. ( Base ` G ) ) |
38 |
|
simpr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) = ( F ` x ) ) |
39 |
38
|
eqeq1d |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( ( J ` r ) = .0. <-> ( F ` x ) = .0. ) ) |
40 |
39
|
biimpa |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> ( F ` x ) = .0. ) |
41 |
|
fniniseg |
|- ( F Fn ( Base ` G ) -> ( x e. ( `' F " { .0. } ) <-> ( x e. ( Base ` G ) /\ ( F ` x ) = .0. ) ) ) |
42 |
41
|
biimpar |
|- ( ( F Fn ( Base ` G ) /\ ( x e. ( Base ` G ) /\ ( F ` x ) = .0. ) ) -> x e. ( `' F " { .0. } ) ) |
43 |
23 37 40 42
|
syl12anc |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. ( `' F " { .0. } ) ) |
44 |
43 3
|
eleqtrrdi |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. K ) |
45 |
28
|
eqg0el |
|- ( ( G e. Grp /\ K e. ( SubGrp ` G ) ) -> ( [ x ] ( G ~QG K ) = K <-> x e. K ) ) |
46 |
45
|
biimpar |
|- ( ( ( G e. Grp /\ K e. ( SubGrp ` G ) ) /\ x e. K ) -> [ x ] ( G ~QG K ) = K ) |
47 |
10 16 44 46
|
syl21anc |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> [ x ] ( G ~QG K ) = K ) |
48 |
30
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> ( G ~QG K ) Er ( Base ` G ) ) |
49 |
|
simpr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( Base ` Q ) ) |
50 |
27
|
adantr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
51 |
49 50
|
eleqtrrd |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
52 |
51
|
ad3antrrr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
53 |
|
simpllr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> x e. r ) |
54 |
|
qsel |
|- ( ( ( G ~QG K ) Er ( Base ` G ) /\ r e. ( ( Base ` G ) /. ( G ~QG K ) ) /\ x e. r ) -> r = [ x ] ( G ~QG K ) ) |
55 |
48 52 53 54
|
syl3anc |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r = [ x ] ( G ~QG K ) ) |
56 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
57 |
17 28 56
|
eqgid |
|- ( K e. ( SubGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG K ) = K ) |
58 |
15 57
|
syl |
|- ( ph -> [ ( 0g ` G ) ] ( G ~QG K ) = K ) |
59 |
58
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> [ ( 0g ` G ) ] ( G ~QG K ) = K ) |
60 |
47 55 59
|
3eqtr4d |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r = [ ( 0g ` G ) ] ( G ~QG K ) ) |
61 |
4 56
|
qus0 |
|- ( K e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
62 |
13 61
|
syl |
|- ( ph -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
63 |
62
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
64 |
63
|
adantr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> [ ( 0g ` G ) ] ( G ~QG K ) = ( 0g ` Q ) ) |
65 |
60 64
|
eqtrd |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ ( J ` r ) = .0. ) -> r = ( 0g ` Q ) ) |
66 |
63
|
eqeq2d |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( r = [ ( 0g ` G ) ] ( G ~QG K ) <-> r = ( 0g ` Q ) ) ) |
67 |
66
|
biimpar |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> r = [ ( 0g ` G ) ] ( G ~QG K ) ) |
68 |
67
|
fveq2d |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( J ` r ) = ( J ` [ ( 0g ` G ) ] ( G ~QG K ) ) ) |
69 |
2
|
adantr |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
70 |
69
|
ad3antrrr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> F e. ( G GrpHom H ) ) |
71 |
17 56
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
72 |
9 71
|
syl |
|- ( ph -> ( 0g ` G ) e. ( Base ` G ) ) |
73 |
72
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
74 |
1 70 3 4 5 73
|
ghmquskerlem1 |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( J ` [ ( 0g ` G ) ] ( G ~QG K ) ) = ( F ` ( 0g ` G ) ) ) |
75 |
56 1
|
ghmid |
|- ( F e. ( G GrpHom H ) -> ( F ` ( 0g ` G ) ) = .0. ) |
76 |
2 75
|
syl |
|- ( ph -> ( F ` ( 0g ` G ) ) = .0. ) |
77 |
76
|
ad4antr |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( F ` ( 0g ` G ) ) = .0. ) |
78 |
68 74 77
|
3eqtrd |
|- ( ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) /\ r = ( 0g ` Q ) ) -> ( J ` r ) = .0. ) |
79 |
65 78
|
impbida |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( ( J ` r ) = .0. <-> r = ( 0g ` Q ) ) ) |
80 |
1 69 3 4 5 49
|
ghmquskerlem2 |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. r ( J ` r ) = ( F ` x ) ) |
81 |
79 80
|
r19.29a |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> ( ( J ` r ) = .0. <-> r = ( 0g ` Q ) ) ) |
82 |
81
|
pm5.32da |
|- ( ph -> ( ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) <-> ( r e. ( Base ` Q ) /\ r = ( 0g ` Q ) ) ) ) |
83 |
|
simpr |
|- ( ( ph /\ r = ( 0g ` Q ) ) -> r = ( 0g ` Q ) ) |
84 |
4
|
qusgrp |
|- ( K e. ( NrmSGrp ` G ) -> Q e. Grp ) |
85 |
13 84
|
syl |
|- ( ph -> Q e. Grp ) |
86 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
87 |
|
eqid |
|- ( 0g ` Q ) = ( 0g ` Q ) |
88 |
86 87
|
grpidcl |
|- ( Q e. Grp -> ( 0g ` Q ) e. ( Base ` Q ) ) |
89 |
85 88
|
syl |
|- ( ph -> ( 0g ` Q ) e. ( Base ` Q ) ) |
90 |
89
|
adantr |
|- ( ( ph /\ r = ( 0g ` Q ) ) -> ( 0g ` Q ) e. ( Base ` Q ) ) |
91 |
83 90
|
eqeltrd |
|- ( ( ph /\ r = ( 0g ` Q ) ) -> r e. ( Base ` Q ) ) |
92 |
91
|
ex |
|- ( ph -> ( r = ( 0g ` Q ) -> r e. ( Base ` Q ) ) ) |
93 |
92
|
pm4.71rd |
|- ( ph -> ( r = ( 0g ` Q ) <-> ( r e. ( Base ` Q ) /\ r = ( 0g ` Q ) ) ) ) |
94 |
82 93
|
bitr4d |
|- ( ph -> ( ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) <-> r = ( 0g ` Q ) ) ) |
95 |
2
|
adantr |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> F e. ( G GrpHom H ) ) |
96 |
95
|
imaexd |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> ( F " q ) e. _V ) |
97 |
96
|
uniexd |
|- ( ( ph /\ q e. ( Base ` Q ) ) -> U. ( F " q ) e. _V ) |
98 |
5
|
a1i |
|- ( ph -> J = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) ) |
99 |
22 36
|
fnfvelrnd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ran F ) |
100 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ran F = ( Base ` H ) ) |
101 |
99 100
|
eleqtrd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( F ` x ) e. ( Base ` H ) ) |
102 |
38 101
|
eqeltrd |
|- ( ( ( ( ph /\ r e. ( Base ` Q ) ) /\ x e. r ) /\ ( J ` r ) = ( F ` x ) ) -> ( J ` r ) e. ( Base ` H ) ) |
103 |
102 80
|
r19.29a |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> ( J ` r ) e. ( Base ` H ) ) |
104 |
97 98 103
|
fmpt2d |
|- ( ph -> J : ( Base ` Q ) --> ( Base ` H ) ) |
105 |
104
|
ffnd |
|- ( ph -> J Fn ( Base ` Q ) ) |
106 |
|
fniniseg |
|- ( J Fn ( Base ` Q ) -> ( r e. ( `' J " { .0. } ) <-> ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) ) ) |
107 |
105 106
|
syl |
|- ( ph -> ( r e. ( `' J " { .0. } ) <-> ( r e. ( Base ` Q ) /\ ( J ` r ) = .0. ) ) ) |
108 |
|
velsn |
|- ( r e. { ( 0g ` Q ) } <-> r = ( 0g ` Q ) ) |
109 |
108
|
a1i |
|- ( ph -> ( r e. { ( 0g ` Q ) } <-> r = ( 0g ` Q ) ) ) |
110 |
94 107 109
|
3bitr4d |
|- ( ph -> ( r e. ( `' J " { .0. } ) <-> r e. { ( 0g ` Q ) } ) ) |
111 |
110
|
eqrdv |
|- ( ph -> ( `' J " { .0. } ) = { ( 0g ` Q ) } ) |
112 |
86 18 87 1
|
kerf1ghm |
|- ( J e. ( Q GrpHom H ) -> ( J : ( Base ` Q ) -1-1-> ( Base ` H ) <-> ( `' J " { .0. } ) = { ( 0g ` Q ) } ) ) |
113 |
112
|
biimpar |
|- ( ( J e. ( Q GrpHom H ) /\ ( `' J " { .0. } ) = { ( 0g ` Q ) } ) -> J : ( Base ` Q ) -1-1-> ( Base ` H ) ) |
114 |
7 111 113
|
syl2anc |
|- ( ph -> J : ( Base ` Q ) -1-1-> ( Base ` H ) ) |
115 |
|
f1f1orn |
|- ( J : ( Base ` Q ) -1-1-> ( Base ` H ) -> J : ( Base ` Q ) -1-1-onto-> ran J ) |
116 |
114 115
|
syl |
|- ( ph -> J : ( Base ` Q ) -1-1-onto-> ran J ) |
117 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` G ) ) -> x e. ( Base ` G ) ) |
118 |
|
ovex |
|- ( G ~QG K ) e. _V |
119 |
118
|
ecelqsi |
|- ( x e. ( Base ` G ) -> [ x ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
120 |
117 119
|
syl |
|- ( ( ph /\ x e. ( Base ` G ) ) -> [ x ] ( G ~QG K ) e. ( ( Base ` G ) /. ( G ~QG K ) ) ) |
121 |
27
|
adantr |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( ( Base ` G ) /. ( G ~QG K ) ) = ( Base ` Q ) ) |
122 |
120 121
|
eleqtrd |
|- ( ( ph /\ x e. ( Base ` G ) ) -> [ x ] ( G ~QG K ) e. ( Base ` Q ) ) |
123 |
|
elqsi |
|- ( r e. ( ( Base ` G ) /. ( G ~QG K ) ) -> E. x e. ( Base ` G ) r = [ x ] ( G ~QG K ) ) |
124 |
51 123
|
syl |
|- ( ( ph /\ r e. ( Base ` Q ) ) -> E. x e. ( Base ` G ) r = [ x ] ( G ~QG K ) ) |
125 |
|
simpr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> r = [ x ] ( G ~QG K ) ) |
126 |
125
|
fveq2d |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` r ) = ( J ` [ x ] ( G ~QG K ) ) ) |
127 |
2
|
adantr |
|- ( ( ph /\ x e. ( Base ` G ) ) -> F e. ( G GrpHom H ) ) |
128 |
1 127 3 4 5 117
|
ghmquskerlem1 |
|- ( ( ph /\ x e. ( Base ` G ) ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
129 |
128
|
adantr |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` [ x ] ( G ~QG K ) ) = ( F ` x ) ) |
130 |
126 129
|
eqtrd |
|- ( ( ( ph /\ x e. ( Base ` G ) ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` r ) = ( F ` x ) ) |
131 |
130
|
3impa |
|- ( ( ph /\ x e. ( Base ` G ) /\ r = [ x ] ( G ~QG K ) ) -> ( J ` r ) = ( F ` x ) ) |
132 |
131
|
eqeq1d |
|- ( ( ph /\ x e. ( Base ` G ) /\ r = [ x ] ( G ~QG K ) ) -> ( ( J ` r ) = y <-> ( F ` x ) = y ) ) |
133 |
122 124 132
|
rexxfrd2 |
|- ( ph -> ( E. r e. ( Base ` Q ) ( J ` r ) = y <-> E. x e. ( Base ` G ) ( F ` x ) = y ) ) |
134 |
|
fvelrnb |
|- ( J Fn ( Base ` Q ) -> ( y e. ran J <-> E. r e. ( Base ` Q ) ( J ` r ) = y ) ) |
135 |
105 134
|
syl |
|- ( ph -> ( y e. ran J <-> E. r e. ( Base ` Q ) ( J ` r ) = y ) ) |
136 |
|
fvelrnb |
|- ( F Fn ( Base ` G ) -> ( y e. ran F <-> E. x e. ( Base ` G ) ( F ` x ) = y ) ) |
137 |
21 136
|
syl |
|- ( ph -> ( y e. ran F <-> E. x e. ( Base ` G ) ( F ` x ) = y ) ) |
138 |
133 135 137
|
3bitr4rd |
|- ( ph -> ( y e. ran F <-> y e. ran J ) ) |
139 |
138
|
eqrdv |
|- ( ph -> ran F = ran J ) |
140 |
139 6
|
eqtr3d |
|- ( ph -> ran J = ( Base ` H ) ) |
141 |
140
|
f1oeq3d |
|- ( ph -> ( J : ( Base ` Q ) -1-1-onto-> ran J <-> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) ) |
142 |
116 141
|
mpbid |
|- ( ph -> J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) |
143 |
86 18
|
isgim |
|- ( J e. ( Q GrpIso H ) <-> ( J e. ( Q GrpHom H ) /\ J : ( Base ` Q ) -1-1-onto-> ( Base ` H ) ) ) |
144 |
7 142 143
|
sylanbrc |
|- ( ph -> J e. ( Q GrpIso H ) ) |