Metamath Proof Explorer


Theorem gicqusker

Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses gicqusker.1
|- .0. = ( 0g ` H )
gicqusker.f
|- ( ph -> F e. ( G GrpHom H ) )
gicqusker.k
|- K = ( `' F " { .0. } )
gicqusker.q
|- Q = ( G /s ( G ~QG K ) )
gicqusker.s
|- ( ph -> ran F = ( Base ` H ) )
Assertion gicqusker
|- ( ph -> Q ~=g H )

Proof

Step Hyp Ref Expression
1 gicqusker.1
 |-  .0. = ( 0g ` H )
2 gicqusker.f
 |-  ( ph -> F e. ( G GrpHom H ) )
3 gicqusker.k
 |-  K = ( `' F " { .0. } )
4 gicqusker.q
 |-  Q = ( G /s ( G ~QG K ) )
5 gicqusker.s
 |-  ( ph -> ran F = ( Base ` H ) )
6 imaeq2
 |-  ( p = q -> ( F " p ) = ( F " q ) )
7 6 unieqd
 |-  ( p = q -> U. ( F " p ) = U. ( F " q ) )
8 7 cbvmptv
 |-  ( p e. ( Base ` Q ) |-> U. ( F " p ) ) = ( q e. ( Base ` Q ) |-> U. ( F " q ) )
9 1 2 3 4 8 5 ghmqusker
 |-  ( ph -> ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q GrpIso H ) )
10 brgici
 |-  ( ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q GrpIso H ) -> Q ~=g H )
11 9 10 syl
 |-  ( ph -> Q ~=g H )