Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gicqusker.1 | |- .0. = ( 0g ` H ) |
|
| gicqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
||
| gicqusker.k | |- K = ( `' F " { .0. } ) |
||
| gicqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
||
| gicqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
||
| Assertion | gicqusker | |- ( ph -> Q ~=g H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gicqusker.1 | |- .0. = ( 0g ` H ) |
|
| 2 | gicqusker.f | |- ( ph -> F e. ( G GrpHom H ) ) |
|
| 3 | gicqusker.k | |- K = ( `' F " { .0. } ) |
|
| 4 | gicqusker.q | |- Q = ( G /s ( G ~QG K ) ) |
|
| 5 | gicqusker.s | |- ( ph -> ran F = ( Base ` H ) ) |
|
| 6 | imaeq2 | |- ( p = q -> ( F " p ) = ( F " q ) ) |
|
| 7 | 6 | unieqd | |- ( p = q -> U. ( F " p ) = U. ( F " q ) ) |
| 8 | 7 | cbvmptv | |- ( p e. ( Base ` Q ) |-> U. ( F " p ) ) = ( q e. ( Base ` Q ) |-> U. ( F " q ) ) |
| 9 | 1 2 3 4 8 5 | ghmqusker | |- ( ph -> ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q GrpIso H ) ) |
| 10 | brgici | |- ( ( p e. ( Base ` Q ) |-> U. ( F " p ) ) e. ( Q GrpIso H ) -> Q ~=g H ) |
|
| 11 | 9 10 | syl | |- ( ph -> Q ~=g H ) |