Metamath Proof Explorer


Theorem gicqusker

Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses gicqusker.1 0˙=0H
gicqusker.f φFGGrpHomH
gicqusker.k K=F-10˙
gicqusker.q Q=G/𝑠G~QGK
gicqusker.s φranF=BaseH
Assertion gicqusker φQ𝑔H

Proof

Step Hyp Ref Expression
1 gicqusker.1 0˙=0H
2 gicqusker.f φFGGrpHomH
3 gicqusker.k K=F-10˙
4 gicqusker.q Q=G/𝑠G~QGK
5 gicqusker.s φranF=BaseH
6 imaeq2 p=qFp=Fq
7 6 unieqd p=qFp=Fq
8 7 cbvmptv pBaseQFp=qBaseQFq
9 1 2 3 4 8 5 ghmqusker φpBaseQFpQGrpIsoH
10 brgici pBaseQFpQGrpIsoHQ𝑔H
11 9 10 syl φQ𝑔H