Description: The image H of a group homomorphism F is isomorphic with the quotient group Q over F 's kernel K . Together with ghmker and ghmima , this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gicqusker.1 | |
|
gicqusker.f | |
||
gicqusker.k | |
||
gicqusker.q | |
||
gicqusker.s | |
||
Assertion | gicqusker | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gicqusker.1 | |
|
2 | gicqusker.f | |
|
3 | gicqusker.k | |
|
4 | gicqusker.q | |
|
5 | gicqusker.s | |
|
6 | imaeq2 | |
|
7 | 6 | unieqd | |
8 | 7 | cbvmptv | |
9 | 1 2 3 4 8 5 | ghmqusker | |
10 | brgici | |
|
11 | 9 10 | syl | |