| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmqusker.1 |
|
| 2 |
|
ghmqusker.f |
|
| 3 |
|
ghmqusker.k |
|
| 4 |
|
ghmqusker.q |
|
| 5 |
|
ghmqusker.j |
|
| 6 |
|
ghmqusker.s |
|
| 7 |
1 2 3 4 5
|
ghmquskerlem3 |
|
| 8 |
|
ghmgrp1 |
|
| 9 |
2 8
|
syl |
|
| 10 |
9
|
ad4antr |
|
| 11 |
1
|
ghmker |
|
| 12 |
2 11
|
syl |
|
| 13 |
3 12
|
eqeltrid |
|
| 14 |
|
nsgsubg |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
ad4antr |
|
| 17 |
|
eqid |
|
| 18 |
|
eqid |
|
| 19 |
17 18
|
ghmf |
|
| 20 |
2 19
|
syl |
|
| 21 |
20
|
ffnd |
|
| 22 |
21
|
ad3antrrr |
|
| 23 |
22
|
adantr |
|
| 24 |
4
|
a1i |
|
| 25 |
|
eqidd |
|
| 26 |
|
ovexd |
|
| 27 |
24 25 26 9
|
qusbas |
|
| 28 |
|
eqid |
|
| 29 |
17 28
|
eqger |
|
| 30 |
13 14 29
|
3syl |
|
| 31 |
30
|
qsss |
|
| 32 |
27 31
|
eqsstrrd |
|
| 33 |
32
|
sselda |
|
| 34 |
33
|
elpwid |
|
| 35 |
34
|
sselda |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
adantr |
|
| 38 |
|
simpr |
|
| 39 |
38
|
eqeq1d |
|
| 40 |
39
|
biimpa |
|
| 41 |
|
fniniseg |
|
| 42 |
41
|
biimpar |
|
| 43 |
23 37 40 42
|
syl12anc |
|
| 44 |
43 3
|
eleqtrrdi |
|
| 45 |
28
|
eqg0el |
|
| 46 |
45
|
biimpar |
|
| 47 |
10 16 44 46
|
syl21anc |
|
| 48 |
30
|
ad4antr |
|
| 49 |
|
simpr |
|
| 50 |
27
|
adantr |
|
| 51 |
49 50
|
eleqtrrd |
|
| 52 |
51
|
ad3antrrr |
|
| 53 |
|
simpllr |
|
| 54 |
|
qsel |
|
| 55 |
48 52 53 54
|
syl3anc |
|
| 56 |
|
eqid |
|
| 57 |
17 28 56
|
eqgid |
|
| 58 |
15 57
|
syl |
|
| 59 |
58
|
ad4antr |
|
| 60 |
47 55 59
|
3eqtr4d |
|
| 61 |
4 56
|
qus0 |
|
| 62 |
13 61
|
syl |
|
| 63 |
62
|
ad3antrrr |
|
| 64 |
63
|
adantr |
|
| 65 |
60 64
|
eqtrd |
|
| 66 |
63
|
eqeq2d |
|
| 67 |
66
|
biimpar |
|
| 68 |
67
|
fveq2d |
|
| 69 |
2
|
adantr |
|
| 70 |
69
|
ad3antrrr |
|
| 71 |
17 56
|
grpidcl |
|
| 72 |
9 71
|
syl |
|
| 73 |
72
|
ad4antr |
|
| 74 |
1 70 3 4 5 73
|
ghmquskerlem1 |
|
| 75 |
56 1
|
ghmid |
|
| 76 |
2 75
|
syl |
|
| 77 |
76
|
ad4antr |
|
| 78 |
68 74 77
|
3eqtrd |
|
| 79 |
65 78
|
impbida |
|
| 80 |
1 69 3 4 5 49
|
ghmquskerlem2 |
|
| 81 |
79 80
|
r19.29a |
|
| 82 |
81
|
pm5.32da |
|
| 83 |
|
simpr |
|
| 84 |
4
|
qusgrp |
|
| 85 |
13 84
|
syl |
|
| 86 |
|
eqid |
|
| 87 |
|
eqid |
|
| 88 |
86 87
|
grpidcl |
|
| 89 |
85 88
|
syl |
|
| 90 |
89
|
adantr |
|
| 91 |
83 90
|
eqeltrd |
|
| 92 |
91
|
ex |
|
| 93 |
92
|
pm4.71rd |
|
| 94 |
82 93
|
bitr4d |
|
| 95 |
2
|
adantr |
|
| 96 |
95
|
imaexd |
|
| 97 |
96
|
uniexd |
|
| 98 |
5
|
a1i |
|
| 99 |
22 36
|
fnfvelrnd |
|
| 100 |
6
|
ad3antrrr |
|
| 101 |
99 100
|
eleqtrd |
|
| 102 |
38 101
|
eqeltrd |
|
| 103 |
102 80
|
r19.29a |
|
| 104 |
97 98 103
|
fmpt2d |
|
| 105 |
104
|
ffnd |
|
| 106 |
|
fniniseg |
|
| 107 |
105 106
|
syl |
|
| 108 |
|
velsn |
|
| 109 |
108
|
a1i |
|
| 110 |
94 107 109
|
3bitr4d |
|
| 111 |
110
|
eqrdv |
|
| 112 |
86 18 87 1
|
kerf1ghm |
|
| 113 |
112
|
biimpar |
|
| 114 |
7 111 113
|
syl2anc |
|
| 115 |
|
f1f1orn |
|
| 116 |
114 115
|
syl |
|
| 117 |
|
simpr |
|
| 118 |
|
ovex |
|
| 119 |
118
|
ecelqsi |
|
| 120 |
117 119
|
syl |
|
| 121 |
27
|
adantr |
|
| 122 |
120 121
|
eleqtrd |
|
| 123 |
|
elqsi |
|
| 124 |
51 123
|
syl |
|
| 125 |
|
simpr |
|
| 126 |
125
|
fveq2d |
|
| 127 |
2
|
adantr |
|
| 128 |
1 127 3 4 5 117
|
ghmquskerlem1 |
|
| 129 |
128
|
adantr |
|
| 130 |
126 129
|
eqtrd |
|
| 131 |
130
|
3impa |
|
| 132 |
131
|
eqeq1d |
|
| 133 |
122 124 132
|
rexxfrd2 |
|
| 134 |
|
fvelrnb |
|
| 135 |
105 134
|
syl |
|
| 136 |
|
fvelrnb |
|
| 137 |
21 136
|
syl |
|
| 138 |
133 135 137
|
3bitr4rd |
|
| 139 |
138
|
eqrdv |
|
| 140 |
139 6
|
eqtr3d |
|
| 141 |
140
|
f1oeq3d |
|
| 142 |
116 141
|
mpbid |
|
| 143 |
86 18
|
isgim |
|
| 144 |
7 142 143
|
sylanbrc |
|