Metamath Proof Explorer


Theorem lmhmqusker

Description: A surjective module homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses lmhmqusker.1 0˙=0H
lmhmqusker.f φFGLMHomH
lmhmqusker.k K=F-10˙
lmhmqusker.q Q=G/𝑠G~QGK
lmhmqusker.s φranF=BaseH
lmhmqusker.j J=qBaseQFq
Assertion lmhmqusker φJQLMIsoH

Proof

Step Hyp Ref Expression
1 lmhmqusker.1 0˙=0H
2 lmhmqusker.f φFGLMHomH
3 lmhmqusker.k K=F-10˙
4 lmhmqusker.q Q=G/𝑠G~QGK
5 lmhmqusker.s φranF=BaseH
6 lmhmqusker.j J=qBaseQFq
7 eqid BaseQ=BaseQ
8 eqid Q=Q
9 eqid H=H
10 eqid ScalarQ=ScalarQ
11 eqid ScalarH=ScalarH
12 eqid BaseScalarQ=BaseScalarQ
13 eqid BaseG=BaseG
14 lmhmlmod1 FGLMHomHGLMod
15 2 14 syl φGLMod
16 eqid LSubSpG=LSubSpG
17 3 1 16 lmhmkerlss FGLMHomHKLSubSpG
18 2 17 syl φKLSubSpG
19 4 13 15 18 quslmod φQLMod
20 lmhmlmod2 FGLMHomHHLMod
21 2 20 syl φHLMod
22 eqid ScalarG=ScalarG
23 22 11 lmhmsca FGLMHomHScalarH=ScalarG
24 2 23 syl φScalarH=ScalarG
25 4 a1i φQ=G/𝑠G~QGK
26 13 a1i φBaseG=BaseG
27 ovexd φG~QGKV
28 25 26 27 15 22 quss φScalarG=ScalarQ
29 24 28 eqtrd φScalarH=ScalarQ
30 lmghm FGLMHomHFGGrpHomH
31 2 30 syl φFGGrpHomH
32 1 31 3 4 6 5 ghmqusker φJQGrpIsoH
33 gimghm JQGrpIsoHJQGrpHomH
34 32 33 syl φJQGrpHomH
35 1 ghmker FGGrpHomHF-10˙NrmSGrpG
36 31 35 syl φF-10˙NrmSGrpG
37 3 36 eqeltrid φKNrmSGrpG
38 nsgsubg KNrmSGrpGKSubGrpG
39 eqid G~QGK=G~QGK
40 13 39 eqger KSubGrpGG~QGKErBaseG
41 37 38 40 3syl φG~QGKErBaseG
42 41 ad4antr φkBaseScalarQrBaseQxrJr=FxG~QGKErBaseG
43 simpllr φkBaseScalarQrBaseQxrJr=FxrBaseQ
44 25 26 27 15 qusbas φBaseG/G~QGK=BaseQ
45 44 ad4antr φkBaseScalarQrBaseQxrJr=FxBaseG/G~QGK=BaseQ
46 43 45 eleqtrrd φkBaseScalarQrBaseQxrJr=FxrBaseG/G~QGK
47 simplr φkBaseScalarQrBaseQxrJr=Fxxr
48 qsel G~QGKErBaseGrBaseG/G~QGKxrr=xG~QGK
49 42 46 47 48 syl3anc φkBaseScalarQrBaseQxrJr=Fxr=xG~QGK
50 49 oveq2d φkBaseScalarQrBaseQxrJr=FxkQr=kQxG~QGK
51 eqid BaseScalarG=BaseScalarG
52 eqid G=G
53 15 ad4antr φkBaseScalarQrBaseQxrJr=FxGLMod
54 18 ad4antr φkBaseScalarQrBaseQxrJr=FxKLSubSpG
55 simp-4r φkBaseScalarQrBaseQxrJr=FxkBaseScalarQ
56 28 fveq2d φBaseScalarG=BaseScalarQ
57 56 ad4antr φkBaseScalarQrBaseQxrJr=FxBaseScalarG=BaseScalarQ
58 55 57 eleqtrrd φkBaseScalarQrBaseQxrJr=FxkBaseScalarG
59 41 qsss φBaseG/G~QGK𝒫BaseG
60 44 59 eqsstrrd φBaseQ𝒫BaseG
61 60 sselda φrBaseQr𝒫BaseG
62 61 elpwid φrBaseQrBaseG
63 62 ad5ant13 φkBaseScalarQrBaseQxrJr=FxrBaseG
64 63 47 sseldd φkBaseScalarQrBaseQxrJr=FxxBaseG
65 13 39 51 52 53 54 58 4 8 64 qusvsval φkBaseScalarQrBaseQxrJr=FxkQxG~QGK=kGxG~QGK
66 50 65 eqtrd φkBaseScalarQrBaseQxrJr=FxkQr=kGxG~QGK
67 66 fveq2d φkBaseScalarQrBaseQxrJr=FxJkQr=JkGxG~QGK
68 31 ad4antr φkBaseScalarQrBaseQxrJr=FxFGGrpHomH
69 13 22 52 51 lmodvscl GLModkBaseScalarGxBaseGkGxBaseG
70 53 58 64 69 syl3anc φkBaseScalarQrBaseQxrJr=FxkGxBaseG
71 1 68 3 4 6 70 ghmquskerlem1 φkBaseScalarQrBaseQxrJr=FxJkGxG~QGK=FkGx
72 2 ad4antr φkBaseScalarQrBaseQxrJr=FxFGLMHomH
73 22 51 13 52 9 lmhmlin FGLMHomHkBaseScalarGxBaseGFkGx=kHFx
74 72 58 64 73 syl3anc φkBaseScalarQrBaseQxrJr=FxFkGx=kHFx
75 67 71 74 3eqtrd φkBaseScalarQrBaseQxrJr=FxJkQr=kHFx
76 simpr φkBaseScalarQrBaseQxrJr=FxJr=Fx
77 76 oveq2d φkBaseScalarQrBaseQxrJr=FxkHJr=kHFx
78 75 77 eqtr4d φkBaseScalarQrBaseQxrJr=FxJkQr=kHJr
79 31 ad2antrr φkBaseScalarQrBaseQFGGrpHomH
80 simpr φkBaseScalarQrBaseQrBaseQ
81 1 79 3 4 6 80 ghmquskerlem2 φkBaseScalarQrBaseQxrJr=Fx
82 78 81 r19.29a φkBaseScalarQrBaseQJkQr=kHJr
83 82 anasss φkBaseScalarQrBaseQJkQr=kHJr
84 7 8 9 10 11 12 19 21 29 34 83 islmhmd φJQLMHomH
85 eqid BaseH=BaseH
86 7 85 gimf1o JQGrpIsoHJ:BaseQ1-1 ontoBaseH
87 32 86 syl φJ:BaseQ1-1 ontoBaseH
88 7 85 islmim JQLMIsoHJQLMHomHJ:BaseQ1-1 ontoBaseH
89 84 87 88 sylanbrc φJQLMIsoH