Metamath Proof Explorer


Theorem gimf1o

Description: An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses isgim.b B=BaseR
isgim.c C=BaseS
Assertion gimf1o FRGrpIsoSF:B1-1 ontoC

Proof

Step Hyp Ref Expression
1 isgim.b B=BaseR
2 isgim.c C=BaseS
3 1 2 isgim FRGrpIsoSFRGrpHomSF:B1-1 ontoC
4 3 simprbi FRGrpIsoSF:B1-1 ontoC