| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ghmqusker.1 |
⊢ 0 = ( 0g ‘ 𝐻 ) |
| 2 |
|
ghmqusker.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 3 |
|
ghmqusker.k |
⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) |
| 4 |
|
ghmqusker.q |
⊢ 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) |
| 5 |
|
ghmqusker.j |
⊢ 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) |
| 6 |
|
ghmquskerco.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 7 |
|
ghmquskerco.l |
⊢ 𝐿 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 9 |
6 8
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 11 |
10
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 12 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) ) |
| 13 |
12
|
imaexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
| 14 |
13
|
uniexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
| 15 |
14
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V ) |
| 16 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 17 |
16
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V → ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 ) |
| 18 |
15 17
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 ) |
| 19 |
|
ovex |
⊢ ( 𝐺 ~QG 𝐾 ) ∈ V |
| 20 |
19
|
ecelqsi |
⊢ ( 𝑥 ∈ 𝐵 → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) ) |
| 22 |
4
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) ) |
| 23 |
6
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐺 ) ) |
| 24 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V ) |
| 25 |
|
reldmghm |
⊢ Rel dom GrpHom |
| 26 |
25
|
ovrcl |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 27 |
26
|
simpld |
⊢ ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ V ) |
| 28 |
2 27
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 29 |
22 23 24 28
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) ) |
| 31 |
21 30
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( Base ‘ 𝑄 ) ) |
| 32 |
7
|
a1i |
⊢ ( 𝜑 → 𝐿 = ( 𝑥 ∈ 𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 33 |
5
|
a1i |
⊢ ( 𝜑 → 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ∪ ( 𝐹 “ 𝑞 ) ) ) |
| 34 |
|
imaeq2 |
⊢ ( 𝑞 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ( 𝐹 “ 𝑞 ) = ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 35 |
34
|
unieqd |
⊢ ( 𝑞 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ∪ ( 𝐹 “ 𝑞 ) = ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 36 |
31 32 33 35
|
fmptco |
⊢ ( 𝜑 → ( 𝐽 ∘ 𝐿 ) = ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) ) |
| 37 |
36
|
fneq1d |
⊢ ( 𝜑 → ( ( 𝐽 ∘ 𝐿 ) Fn 𝐵 ↔ ( 𝑥 ∈ 𝐵 ↦ ∪ ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 ) ) |
| 38 |
18 37
|
mpbird |
⊢ ( 𝜑 → ( 𝐽 ∘ 𝐿 ) Fn 𝐵 ) |
| 39 |
|
ecexg |
⊢ ( ( 𝐺 ~QG 𝐾 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V ) |
| 40 |
19 39
|
ax-mp |
⊢ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V |
| 41 |
40 7
|
fnmpti |
⊢ 𝐿 Fn 𝐵 |
| 42 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 43 |
|
fvco2 |
⊢ ( ( 𝐿 Fn 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐽 ∘ 𝐿 ) ‘ 𝑥 ) = ( 𝐽 ‘ ( 𝐿 ‘ 𝑥 ) ) ) |
| 44 |
41 42 43
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐽 ∘ 𝐿 ) ‘ 𝑥 ) = ( 𝐽 ‘ ( 𝐿 ‘ 𝑥 ) ) ) |
| 45 |
40
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V ) |
| 46 |
32 45
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐿 ‘ 𝑥 ) = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) |
| 47 |
46
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ‘ ( 𝐿 ‘ 𝑥 ) ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) |
| 48 |
42 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 49 |
1 12 3 4 5 48
|
ghmquskerlem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 50 |
44 47 49
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑥 ) = ( ( 𝐽 ∘ 𝐿 ) ‘ 𝑥 ) ) |
| 51 |
11 38 50
|
eqfnfvd |
⊢ ( 𝜑 → 𝐹 = ( 𝐽 ∘ 𝐿 ) ) |