Metamath Proof Explorer


Theorem ghmquskerco

Description: In the case of theorem ghmqusker , the composition of the natural homomorphism L with the constructed homomorphism J equals the original homomorphism F . One says that F factors through Q . (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025)

Ref Expression
Hypotheses ghmqusker.1 0 = ( 0g𝐻 )
ghmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
ghmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
ghmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
ghmqusker.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
ghmquskerco.b 𝐵 = ( Base ‘ 𝐺 )
ghmquskerco.l 𝐿 = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
Assertion ghmquskerco ( 𝜑𝐹 = ( 𝐽𝐿 ) )

Proof

Step Hyp Ref Expression
1 ghmqusker.1 0 = ( 0g𝐻 )
2 ghmqusker.f ( 𝜑𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
3 ghmqusker.k 𝐾 = ( 𝐹 “ { 0 } )
4 ghmqusker.q 𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) )
5 ghmqusker.j 𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) )
6 ghmquskerco.b 𝐵 = ( Base ‘ 𝐺 )
7 ghmquskerco.l 𝐿 = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
8 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
9 6 8 ghmf ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) )
10 2 9 syl ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ 𝐻 ) )
11 10 ffnd ( 𝜑𝐹 Fn 𝐵 )
12 2 adantr ( ( 𝜑𝑥𝐵 ) → 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) )
13 12 imaexd ( ( 𝜑𝑥𝐵 ) → ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V )
14 13 uniexd ( ( 𝜑𝑥𝐵 ) → ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V )
15 14 ralrimiva ( 𝜑 → ∀ 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V )
16 eqid ( 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) = ( 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) )
17 16 fnmpt ( ∀ 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ∈ V → ( 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 )
18 15 17 syl ( 𝜑 → ( 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 )
19 ovex ( 𝐺 ~QG 𝐾 ) ∈ V
20 19 ecelqsi ( 𝑥𝐵 → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) )
21 20 adantl ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) )
22 4 a1i ( 𝜑𝑄 = ( 𝐺 /s ( 𝐺 ~QG 𝐾 ) ) )
23 6 a1i ( 𝜑𝐵 = ( Base ‘ 𝐺 ) )
24 ovexd ( 𝜑 → ( 𝐺 ~QG 𝐾 ) ∈ V )
25 reldmghm Rel dom GrpHom
26 25 ovrcl ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) )
27 26 simpld ( 𝐹 ∈ ( 𝐺 GrpHom 𝐻 ) → 𝐺 ∈ V )
28 2 27 syl ( 𝜑𝐺 ∈ V )
29 22 23 24 28 qusbas ( 𝜑 → ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) )
30 29 adantr ( ( 𝜑𝑥𝐵 ) → ( 𝐵 / ( 𝐺 ~QG 𝐾 ) ) = ( Base ‘ 𝑄 ) )
31 21 30 eleqtrd ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ ( Base ‘ 𝑄 ) )
32 7 a1i ( 𝜑𝐿 = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) )
33 5 a1i ( 𝜑𝐽 = ( 𝑞 ∈ ( Base ‘ 𝑄 ) ↦ ( 𝐹𝑞 ) ) )
34 imaeq2 ( 𝑞 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ( 𝐹𝑞 ) = ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) )
35 34 unieqd ( 𝑞 = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) → ( 𝐹𝑞 ) = ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) )
36 31 32 33 35 fmptco ( 𝜑 → ( 𝐽𝐿 ) = ( 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) )
37 36 fneq1d ( 𝜑 → ( ( 𝐽𝐿 ) Fn 𝐵 ↔ ( 𝑥𝐵 ( 𝐹 “ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) ) Fn 𝐵 ) )
38 18 37 mpbird ( 𝜑 → ( 𝐽𝐿 ) Fn 𝐵 )
39 ecexg ( ( 𝐺 ~QG 𝐾 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V )
40 19 39 ax-mp [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V
41 40 7 fnmpti 𝐿 Fn 𝐵
42 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
43 fvco2 ( ( 𝐿 Fn 𝐵𝑥𝐵 ) → ( ( 𝐽𝐿 ) ‘ 𝑥 ) = ( 𝐽 ‘ ( 𝐿𝑥 ) ) )
44 41 42 43 sylancr ( ( 𝜑𝑥𝐵 ) → ( ( 𝐽𝐿 ) ‘ 𝑥 ) = ( 𝐽 ‘ ( 𝐿𝑥 ) ) )
45 40 a1i ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ∈ V )
46 32 45 fvmpt2d ( ( 𝜑𝑥𝐵 ) → ( 𝐿𝑥 ) = [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) )
47 46 fveq2d ( ( 𝜑𝑥𝐵 ) → ( 𝐽 ‘ ( 𝐿𝑥 ) ) = ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) )
48 42 6 eleqtrdi ( ( 𝜑𝑥𝐵 ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
49 1 12 3 4 5 48 ghmquskerlem1 ( ( 𝜑𝑥𝐵 ) → ( 𝐽 ‘ [ 𝑥 ] ( 𝐺 ~QG 𝐾 ) ) = ( 𝐹𝑥 ) )
50 44 47 49 3eqtrrd ( ( 𝜑𝑥𝐵 ) → ( 𝐹𝑥 ) = ( ( 𝐽𝐿 ) ‘ 𝑥 ) )
51 11 38 50 eqfnfvd ( 𝜑𝐹 = ( 𝐽𝐿 ) )